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1. Introduction
Controlling chemical reactions by selecting specific bond

or vibrational mode excited states of the reactants and
analyzing the energy disposal into specific vibrational states
as well as into rotational and translational degrees of freedom
of the product molecules has been an ambitious project in
chemical dynamics1 for a long time. Deuterated methane is
a good example for which it has been proved that vibra-
tionally excited states control the course of the reaction with
chlorine atoms.2 Excitation of C-H or C-D overtone states
promotes the formation of CH2D or CH3 product, respec-
tively. Similarly, convincing evidence for the mode-selective
desorption of H2 from a hydrogen-covered silicon surface,
Si(111), by using tunable infrared radiation has been found.3,4

The wavelength dependence of the desorption yield peaks
at 0.26 eV, the energy of the Si-H vibrational stretch mode.

Such selectivities and specificities have been obtained thanks
to the progress in experimental spectroscopic techniques3,5

and molecular beams. However, this endeavor reveals the
problems related to the assignment of the spectra of vibra-
tionally excited molecules and the elucidation of the mech-
anisms for intramolecular vibrational energy redistribution
(IVR), the solutions of which require a comprehensive
understanding of molecular dynamics.

Generally, elementary chemical reactions, dissociation-
recombination-isomerization, involve breaking and forming
simple chemical bonds, and most often significant energy is
required to overcome potential barriers. Thus, reacting
molecules are vibrationally excited species, far from their
equilibrium states, rendering the usual harmonic normal-
mode analysis, valid at low excitation energies, inaccurate.
The molecular potential energy surfaces (PESs) reveal the
reaction paths, and they are generally nonlinear functions
with strong couplings among the degrees of freedom which
allow the energy to flow. For this reason, it is not surprising
that the advances of nonlinear classical mechanics,6,7 started
with the pioneering work of Henry Poincaré8 and mainly
developed in the second half of the twentieth century,
introduced new methods and concepts in the theories of
vibrationally excited and reacting molecules. As found for
general nonlinear dynamical systems with a few degrees of
freedom, excited molecules are expected to show chaotic
motions in which the energy is redistributed to many bonds,
resonances, energy localization among specific bonds, and
bifurcations of vibrational modes9-11 to produce new type
of motions as energy increases.

Nonlinear classical mechanics offer a systematic way to
study complex systems. The hierarchical detailed exploration
of the molecular phase space structure (Figure 1) requires
first the location of the equilibrium points of the potential
function and then the location of periodic orbits (POs) that
emanate from the equilibrium points, the tori around stable
POs, stable and unstable manifolds for the unstable POs,
cantori,12,13 and transition state objects such as the normally
hyperbolic invariant manifolds (NHIM).14-17 According to
the scheme of Figure 1, periodic orbits can be considered as
the first order approximation to the dynamics of the molecule,
with the equilibria of the PES being the zero order ap-
proximation. We say that families of periodic orbits for a
range of energies form the backbone of the phase space
structure.

Do the classical nonlinear mechanical motions haVe
quantum mechanical counterparts with spectroscopic fin-
gerprints?
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This question has given an impetus for the revival of
semiclassical theory18-20 which formulates the correspon-
dence between quantum eigenfunctions and stationary clas-
sical mechanical objects such as tori and periodic orbits. At
the same time, the development of spectroscopic techniques
for investigating highly excited vibrational states of poly-
atomic molecules has put forward the need for assigning
quantum states and extracting the dynamics. It turns out that
the new spectroscopic methods provide the necessary high
resolution, temporal and spatial, spectra to investigate the
above question. Stimulated emission pumping (SEP), a
double-resonance technique, and dispersed fluorescence (DF)
spectroscopy5 gave an impetus to the field of vibrationally
excited molecules in the ground electronic state. Among the
molecules studied by SEP and DF spectroscopy are C2H2,21-27

HCP,28 SO2,29-31 HFCO,32,33 HCO,34,35 DCO,36 HCN,37

NO2,38 and SCCl2.39

Since SEP and DF methods excite the molecule at very
high vibrational states, they are ideal to deduce the dynamics
close to the isomerization or dissociation threshold. As a
matter of fact, the SEP spectra of acetylene were the first
which revealed vibrational (quantum) chaos at energies above
the threshold for acetylene to vinylidene isomerization.27

Vibrational overtone spectroscopy has experienced similar
developments.40 Crim and co-workers41 have combined the
photoacoustic spectroscopy with a time-of-flight apparatus
to control the products in unimolecular and bimolecular
reactions by vibrationally exciting specific chemical bonds
of reactant molecules. This bond selective chemistry reveals
energy localization in specific bonds.

Questions related to energy localization and transfer are
currently put forward for biological molecules such as
proteins.42,43 Time resolved infrared and Raman spectroscopy
spanningatimeintervalfromfemtoseconds44-47tomilliseconds48-50

is a major spectroscopic technique for studying the dynamics
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of biomolecules. Furthermore, efforts to find localized
motions in infinite periodic or random anharmonic lattices
have led to the concept of discrete breathers.51,52 The initial
theoretical observations of localized motions in the work of
Sievers and Takeno53 triggered the discovery of significant
mathematical theorems for the existence of local stationary
objects such as periodic orbits in infinite dimensional lattices.

Polyatomic molecules stimulate new computational chal-
lenges in accurately solving the Schrödinger equation and
obtaining hundreds of vibrational states. Nowadays, triatomic
molecules can be treated with fully ab initio methods, in
both their electronic and nuclear parts. Tetratomic molecules
are more difficult to deal with, in spite of the progress which
has recently been achieved.54 For example, six-dimensional
calculations up to energies of the isomerization of acetylene
to vinylidene have been published.55

The progress of nonlinear mechanics forces us to reex-
amine the mechanisms of breaking and/or forming of a single
chemical bond as it occurs in elementary chemical reactions.
New assignment schemes which allow the classification of
quantum states in a meaningful and useful way are required,
and such novel methods have been developed thanks to
nonlinear mechanics and semiclassical theories for establish-
ing a classical-quantum correspondence.11,56-61 Most of the
methods are based on spectroscopic Hamiltonians and their
representations in action-angle variables.62 Although they
provide the means for assigning and extracting the dynamics
of the majority of eigenstates in a polyad, they are limited
to reduced dimensionality of two or three degrees of freedom.
Another drawback is the loss of a direct contact with the
physical coordinate space of the molecules (Cartesian), since
the semiclassical quantization usually requires a perturbation
expansion of the Hamiltonian in action-angle variables such
as the Birkhoff-Gustavson one.63-65

On the other hand, periodic orbits51,66,67 associated with
global PESs, their bifurcations,7,68 and semiclassical counter-
parts19,69 are free of these limitations. As is demonstrated in
the following sections, (i) POs can be located for polyatomic
molecules with a large number of degrees of freedom and
systematically studied with any type of potential functions
and coordinates. (ii) They are easily visualized in a physical
coordinate system, such as Cartesian, valence, or Jacobi
coordinates. (iii) We can identify resonances among the
vibrational modes, and thus, effective Hamiltonians can be
constructed or a more general resonance map in phase space
such as the Arnold web.61,70,71 Direct comparison of quantum
eigenfunctions with periodic orbits has revealed their local-

ization along POs, stable as well as unstable72 ones. For
vibrationally highly excited molecules, a good correspon-
dence between overtone states and periodic orbits has been
determined for several molecules;9-11,24 however, it is more
difficult to establish a correspondence among combination
states and POs.73,74

The landscape of the PES may be drastically altered as
some parameters in the molecule vary.75 Barriers and minima
may disappear or appear. Similarly, the phase space changes
with the total energy. Stable, quasiperiodic motions may turn
to unstable chaotic ones and vice verse. But most importantly,
new types of motion emanate via bifurcations (or branching)
of periodic orbits. The bifurcation theory of Hamiltonian
dynamical systems has mainly been developed in the last
half of the twentieth century.68 One important outcome of
the theory is the identification of the elementary bifurcations,
which are described by very simple Hamiltonians. In spite
of their simplicity, they can also be found in complex
dynamical systems at critical energies. This makes elemen-
tary bifurcations generic. For molecular Hamiltonian systems,
we have identified the center-saddle,76 period doubling,
pitchfork, and Hopf-like elementary bifurcations.

Bifurcation (branching) phenomena, i.e. the appearance
of new motions and the change of geometry of the old orbits
by varying the energy or parameters of the system, are well-
known in vibrational spectroscopy. For example, the transi-
tion from normal to local mode oscillations, first discovered
in symmetric ABA molecules, can be understood in classical
mechanical phase space as an elementary pitchfork
bifurcation.77,78 The original local mode models included just
the stretching vibrations,79 but they were extended to include
bending vibrations as well.80,81 In what follows, we show
that the notion of a local mode is more general and it is
associated with the bifurcations of classical mechanical
stationary objects, such as periodic orbits and reduced
dimension tori.82,83 Elementary bifurcations are very common
in excited polyatomic molecules, with the simplest one, the
center-saddle, being ubiquitous. By studying periodic orbits
in a parameter space, we discover their bifurcations and
possible localized eigenstates along them. Periodic orbits
which emerge from center-saddle bifurcations appear abruptly
at some critical values of the energy, usually in pairs, and
change drastically the phase space around them. They
penetrate in regions of nuclear phase space which the normal
mode motions cannot reach. Center-saddle bifurcations are
of generic type; that is, they are robust and remain for small
(perturbative) changes of the potential function.84,85 To the
best of our knowledge, HCP was the first molecule where
CS bifurcations were identified spectroscopically (ref 9 and
references therein). Further studies of HOCl, HOBr, and
HCN showed that cascades of CS bifurcations pave the road
to dissociation or isomerization, as the molecule is excited
along the reaction coordinate. This work has been reviewed
in previous publications.10,11

The purpose of the present article is to review recent
theoretical and spectroscopic studies, emphasizing the im-
portance of nonlinear mechanics for assigning the spectra
and extracting the dynamics of polyatomic molecules.
Particularly, we demonstrate the importance of bifurcations
in spectroscopy. The article is organized as follows. The three
next sections introduce the theoretical approaches, which
include quantum, semiclassical, and classical nonlinear
mechanics. Specifically, section 2 describes global and
spectroscopic Hamiltonians and section 3 quantum and

Figure 1. Invariant geometrical structures in the classical phase
space of a molecule.

4250 Chemical Reviews, 2009, Vol. 109, No. 9 Farantos et al.
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semiclassical calculations for the vibrational eigenstates. In
section 4 we introduce the concepts of elementary bifurca-
tions and we present our strategy to locate periodic orbits in
multidimensional Hamiltonians and for general coordinate
systems. In sections 5 and 6, results from triatomic and
polyatomic molecules are presented, respectively. We con-
clude with section 7.

2. Global and Spectroscopic Hamiltonians
A prerequisite for studying the dynamics of a molecule

in a specific electronic state is a reliable PES.86,87 For the
study of highly excited vibrational states, accurate potential
functions over an extended nuclear configuration space are
essential. Therefore, global PESs which describe correctly
dissociation channels, isomers of the molecule, and isomer-
ization pathways are needed. The choice of the nuclear
coordinate system is crucial for expressing the potential
energy surface and the nuclear Hamiltonian. Valence coor-
dinates, i.e. bond lengths and angles, which portray the stable
chemical structures, and Jacobi coordinates are among the
most popular, although several others have been proposed88

depending on the kind of dynamics we want to study
(isomerization, photodissociation, scattering). For triatomic
molecules, Jacobi coordinates are defined with the vectors
along the diatom AB (rb) and the center of mass of AB to
atom C (Rb). γ is the angle between these two vectors. This
coordinate system is preferred for describing the dissociation
channel of atom C from the diatom AB, and the Hamiltonian
operator takes a rather simple form for zero total angular
momentum

µC-AB and µAB are the reduced masses of atom C with the
diatom AB and AB, respectively. ĵ denotes the diatomic
rotational angular momentum operator, and V(R,r,γ) the PES.
Jacobi vectors can be defined for larger polyatomic mol-
ecules, thus providing a systematic way to describe the
nuclear configuration space.

With the current computational power, ab initio electronic
structure calculations are the means for producing global
PESs for triatomic molecules with light atoms by computing
thousands of energies. Reliable and efficient quantum
chemistry electronic structure packages exist which allow
us to carry out calculations at several levels of approximation.
Among the many available for research, in our groups we
use MOLPRO,89 TURBOMOLE,90,91 and GAUSSIAN.92

After obtaining the electronic energies over a predefined
grid of nuclear configuration points, the practice is to fit them
to an analytical function of the nuclear coordinates.86 In a
classical mechanical approximation of molecular dynamics,
we need the energies and the first derivatives (forces) to
integrate the equations of motion and, as we shall see, the
second derivatives in optimization problems. In quantum
dynamics, only the energies are needed. We must mention
that, with the evolution of computers, calculations on the
fly, i.e. to compute the forces directly with the quantum
chemistry electronic structure programs as the trajectory
evolves in time, become feasible.93

However, most frequently interpolation functions are
constructed with many body expansion86,94 and cubic spline
methods. Assuming that the PES of a triatomic molecule is
expressed in the Ri, i ) 1 - 3, coordinates, the many body
expansion implies

where ∆Ri ) Ri - Ri
0 with Ri

0 being the values of the
coordinates at an equilibrium point of the PES. Examples
of this method are the PES of HCP,95 SO2,78 HCO,35,96 and
several states of ozone,97,98 whereas the cubic spline inter-
polation method was used for the ground state of ozone.99

For large polyatomic molecules, such as biomolecules, a
global ab initio PES is out of current computational
capabilities, and thus, analytical functions are used with
several parameters to fit local experimental and theoretical
data such as minima and barriers. Functions based on force
fields100-102 are the most common.103,104

In spite of the progress in ab initio electronic structure
calculations and the predictive power of the global PES, the
computational burden for obtaining experimental accuracy
in spectroscopy and chemical dynamics is huge, even for
triatomic molecules. Thus, local spectroscopic (effective)
Hamiltonians extracted with perturbative63 or algebraic
methods105 are fitted to ab initio or experimental spectra. The
spectroscopic Hamiltonians are usually written as the sum
of a diagonal term, HD, and a nondiagonal resonance term,
HR,

HD denotes the Dunham expansion

In our notation, HD and the terms on the right may be
considered to represent operators or the diagonal matrix
elements, 〈ni|ĤD|ni〉, in a basis set expansion of the ith

harmonic oscillator’s eigenfunctions. The constants (xik,yikm)
are fitted to spectroscopic data and

The Ii are defined with respect to the set of conjugate
dimensionless normal coordinates for mode i, (pi,qi), or the
creation and annihilation operators,

where ni is the number of quanta in the ith oscillator. di

denotes the degeneracy of quantum levels (for example, in
linear molecules di is 1 for the stretching modes but 2 for
the bending modes).

The nondiagonal matrix elements of the Hamiltonian are
a sum of nonlinear resonances VR(ai,ai

†), i.e.,

Ĥ ) - p2

2µC-AB

∂
2

∂R2
- p2

2µAB

∂
2

∂r2
+

1/2( 1

µC-ABR2
+ 1

µABr2)ĵ2 + V(R, r, γ) (1)

V ) 1
2! ∑i,j ( ∂

2U
∂Ri∂Rj

)
0
∆Ri∆Rj +

1
3! ∑i,j,k ( ∂

3U
∂Ri∂Rj∂Rk

)
0
∆Ri∆Rj∆Rk + ... (2)

H ) HD + HR (3)

HD ) ∑
i

ωiIi + ∑
i,k

xikIiIk + ∑
i,k,m

yikmIiIkIm + ...

(4)

Ii )
1
2

(pi
2 + qi

2) ) ai
†ai +

di

2
) ni +

di

2
(5)

{ai
†|ni〉 ) { √ni + 1|ni + 1〉 ;{ai|ni〉 ) { √ni|ni - 1〉

(6)
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A resonance among N vibrational modes implies the relation

where mi are integer numbers and ωi are the frequencies of
the N vibrational modes. Symbols without indexes denote
vectors and • denotes the inner product between two vectors.
An example is a (1:2) Fermi resonance between a stretch
and a bend oscillation (ωs - 2ωb ≈ 0) with the coupling
term written as

Similarly, for a Darling-Dennison coupling between a
symmetric and an antisymmetric stretch (2ωs - 2ωa ≈ 0),
the resonance term is

Diagonalizing the quantum mechanical Hamiltonian ma-
trix, eigenenergies and eigenfunctions are obtained in the
basis set chosen (i.e., harmonic). It is straightforward to
transform the quantum mechanical Hamiltonian to its
semiclassical analogue by employing the Heisenberg cor-
respondence principle, according to which the creation and
annihilation operators are related to the action and angle
variables (Ii,φi) by

Here the i in the exponentials means i ) (-1)1/2. Ii is now
the classical action integral for mode i and the relation Ii )
ni + di/2 is the Einstein-Brillouin-Keller (EBK) quantiza-
tion rule for this mode.19,18,106 Using the above definitions,
we can prove that the semiclassical approximation of the
resonance term in the Hamiltonian takes the form

For example, the semiclassical Fermi resonance is written
as

By construction the spectroscopic Hamiltonian has con-
served good quantum numbers that assist us to reduce the
dimensionality of the problem. The polyad quantum number,
which is the total number of quanta in the excited molecule,
is an example. A vector model for obtaining the constants
of motion in a systematic way has been developed by
Kellman107 and by Fried and Ezra108 and has been extensively
applied by others.59-61

3. Quantum and Semiclassical Vibrational
Eigenstates

Solving the Schrödinger equation with a global PES is a
challenging problem that involves three steps: (i) the expres-
sion of the kinetic operator in the chosen nuclear coordinate
system, (ii) the expansion of the wave function in a basis
set or discretizing the wave function in a coordinate grid,

and (iii) diagonalization of the Hamiltonian matrix or the
time propagation of an initial wave packet. It turns out that
the methods that have prevailed are those based on discretiz-
ing the wave function using uniform grids or the roots of
orthonormal polynomials such as Legendre polynomials for
the bend angles.

The discrete variable representation (DVR) method is the
most popular one for solving the vibrational Schrödinger
equation in triatomic molecules.109 Finite difference (FD)
methods stand as an appealing alternative technique for the
Schrödinger equation by means of a discretization procedure.
The method is introduced as a local approximation of the
wave function Ψ(x), which is interpolated at the grid points
(N) with an ensemble of N Lagrange polynomial functions
of order Ns. This means that only information from the
neighboring points is needed. The accuracy of the ap-
proximation converges very fast with the number of terms
Ns.110 Choosing properly the grid points, the FD method
would be equivalent to a pseudospectral method (PS) in the
limit Ns f N, but of course, the computational cost would
be increased, and calculations may take considerable memory
and time. Besides, although the convergence is not so fast
as in PS, FD methods allow a flexible selection of discreti-
zation points.111-113 FD approximations have led to efficient
parallelized computer codes.54,114-118

Our ability to calculate hundreds of vibrational levels was
enhanced further by introducing iterative methods in solving
the diagonalization problem, such as Lanczos and the filter
diagonalization method.119-126 The traditional approach for
diagonalizing the Hamiltonian matrix is based on the
Householder method,127 which yields the complete list of
eigenvalues and eigenfunctions. However, this robust and
accurate method becomes inadequate when the dimension
of the matrix increases beyond 10000, because of unfavorable
scaling laws in both arithmetic operations and memory. In
the filter diagonalization method, optimally adapted basis
functions, the so-called window basis functions Ψi, which
span only a relatively small subspace of the whole Hilbert
space, are first generated by applying the Green’s function

as a filtering operator onto an initial wavepacket �,

where iW is a complex absorbing potential (W ) 0 for bound-
states calculations). The energies Ei are taken to be equally
spaced in the interval [Emin,Emax]. The filtering is efficiently
performed using the modified Chebychev polynomial expan-
sion of the Green’s function. In the second step, the
eigenstates in the energy window [Emin,Emax] are calculated
by diagonalizing the Hamiltonian in the small set of basis
functions, Ψi.

Another method employed for diagonalizing the Hamil-
tonian matrix is the Lanczos algorithm.128,129 This recursive
method is based on Krylov subspaces,130 such as suggested
by Lanczos.128 The basic idea is to recursively generate a
small number of vectors that span the eigenspace of interest,
rendering a relatively easy diagonalization of a smaller and/
or more-sparse matrix. Because of the recursive nature, these
methods typically have more favorable scaling laws. The
diagonalization of the tridiagonal Lanczos matrix, which is
relatively straightforward, yields approximate eigenvalues.

HR ) ∑
R

cRVR(ai, ai
†) (7)

m1ω1 + m2ω2 + ... + mNωN ) m•ω ≈ 0 (8)

VF ) cF(ababas
† + ab

†ab
†as) (9)

VDD ) cDD(as
†as

†aaaa + asasaa
†aa

†) (10)

ai
† f √Ii exp(-iφ), ai f √Ii exp(iφ) (11)

HR(I, φ) ) 2 ∑
R

cR( ∏
i

Ii
|mi|/2) cos(m•φ) (12)

VF ) 2cFIb√Is cos(φs - 2φb) (13)

Ĝ+(Ei) ) (Ei - Ĥ + iW)-1 (14)

Ψi ) ImĜ+� (15)
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In some cases, the eigenfunctions are needed. They can be
obtained using an additional Lanczos recursion with the
eigenvectors determined in the first recursion. An interesting
observation is that the eigenvalues near the spectral extrema
converge relatively quickly. As a result, the Lanczos method
is particularly efficient for low-lying eigenvalues. The
Lanczos method requires only two vectors to be stored in
the fast memory, because only the action of the Hamiltonian
must be computed. The latter operation relies on matrix-
vector multiplication, which is particularly advantageous if
the matrix is sparse or factorizable. For these reasons, the
Lanczos method is ideally suited for large dimensional
problems such as those met in polyatomic molecules. In
addition, it is possible to calculate transition amplitudes
directly using the Lanczos method without explicit calcula-
tion of the eigenstates.131,132

Application of semiclassical theories to effective spectro-
scopic Hamiltonians is a well-established tool for the
investigation of vibrational systems with two or three degrees
of freedom. For example, in triatomic molecules, in many
cases, the high frequency mode is considered decoupled,
whereas the other two provide the fast and slow modes. The
conservation of the polyad quantum number assists us to
reduce the semiclassical quantization just in one degree of
freedom, as we can conclude from the following equations.

If u denotes the uncoupled degree of freedom and f and s
denote the fast and slow degrees of freedom, respectively,
then we define the action-angle variables (Is,φs), (If,φf), and
(Iu,φu). For a Fermi resonance (eq 9), the conserved polyad
quantum number is

where ns and nf are the number of quanta in the slow and
fastdegreesoffreedom.Introducingthecanonicaltransformation62

we produce a new Hamiltonian which is only a function of
the angle ψ0

whereas the transformed diagonal term in the effective
Hamiltonian (HD) remains a function of the action variables
(Ju,JP,J0). These actions are quantized according to the EBK
condition

Thus, for given quantum numbers of the uncoupled degree
of freedom, nu, and polyad P, the quantum levels are

semiclassically assigned with the quantized values of the
action. The corresponding eigenfunctions can be extracted
approximately by transforming back to the mass weighted
Cartesian coordinates of the harmonic oscillators. The method
has been applied to HOBr,133 where it can be seen that the
semiclassical wave functions are symmetric, thus revealing
the approximate character of the method and the nonlinear
relationship between normal and internal coordinates.

Jung and Taylor60 have introduced a promising method
for assigning the quantum states in a polyad by establishing
the correspondence

between quantum basis set functions |n〉 (i.e., the eigenstates
of the zero order Hamiltonian HD in eq 3) and the functions
� of the angle variables. In other words, the eigenfunctions
of the full Hamiltonian, |Ψk〉, correspond to the semiclassical
functions Ψk(φ), i.e.,

In fact, the transition to the semiclassical eigenfunctions is
done in the reduced dimension space after a canonical
transformation of the Hamiltonian in a form that takes into
account the conservation of the polyad quantum numbers.

The assignment of the eigenfunctions in a given polyad
is obtained by plotting the density and the phase of the
semiclassical functions with respect to the angle variables φ
and counting the nodes along the angles. We expect some
regularity of the semiclassical functions because of their
localization in the resonance region of phase space. To
visualize the motions of the atoms in real space, a transfor-
mation back to normal coordinates, assuming the harmonic
approximation, may be carried out as before. This process
is called lift. The method has successfully been applied to
DCO,60,134 CHBrClF,60,134 SCCl2,135 and the bending spectrum
of acetylene.60

Apparently, since the method is based on the visual
examination of the wave functions, the reduced dimension
problem is restricted at most to three. Moreover, the
recognition of the classical stationary objects, named by the
investigators organizing structures, that cause localization
should be identified for an unambiguous assignment. In other
words, understanding nonlinear mechanics is essential,
despite the authors’ arguments that their method does not
require knowledge of nonlinear mechanics.60

Recently, new approaches have been proposed for assign-
ing the states and extracting the dynamics of vibrationally
highly excited polyatomic molecules,61 that promise to be
free of the limitations of the procedure of Jung and Taylor.
One of the first criteria introduced by Keshavamurthy and
co-workers was based on studying the eigenstate expectation
value of the resonance operator.136-139 Applications to
molecules such as DCO, CHBrClF, and C2H2 with reduced
dimensional Hamiltonians of two degrees of freedom have
shown that it is possible to dynamically assign the quantum
states. This work has also demonstrated that the expectation
values can detect bifurcations and identify the birth of new
modes.

In a very recent paper Manikandan et al.61 introduced a
method based on time-frequency analysis70,140-143 to plot the
resonance (Arnold) web up to a maximum order, and then

P ) 2nf + ns (16)

(Ju, ψu) ) (Iu, φu) (17)

(JP, ψP) ) (2If + Is, φs) (18)

(J0, ψ0) ) (2If, φs - φf/2) (19)

HF ) K0(JP - J0)√J0 cos(2ψ0) (20)

Ju ) nu +
du

2
(21)

JP ) P + df +
ds

2
(22)

J ) J (E, Ju, JP) (23)

) 1
2π ∫0

π
J0 dψ0 ) n + 1

2
(24)

{ |n〉 f �n(φ) ) exp(inφ) (25)

{ |Ψk〉 ) { ∑
n

|ck,n|n〉 f ∑
n

ck,n�n(φ) ) Ψk(φ)

(26)
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they lift the quantum eigenstates onto this resonance web,
thus identifying the resonances that influence the eigenstate.
Martens et al.70 were the first who employed local frequency
analysis to study the phase space structure for a three-mode
model of the OCS molecule. Several methods140,144,145 have
been proposed to obtain the time-dependent frequencies, and
Manikandan et al.61 follow the approach based on a wavelet
analysis.145 Keshavamurthy and co-workers construct the
dynamical web by the following procedure. Several trajec-
tories at constant total energy and polyad numbers are
propagated and followed in the space of appropriately chosen,
independent frequency ratios. Depending on the number of
degrees of freedom, one can have several such spaces. For
each trajectory, the total number of visits to a given region
of the frequency ratio space is recorded. The density plot,
created by averaging and normalizing the number of visits
over all the trajectories, yields the resonance web. It is shown
that the lifting of quantum eigenstates into the resonance web
reveals the classical resonances that influence the eigenstates.
Results for the CDBrClF and CF3CHFI molecules obtained
by employing spectroscopic Hamiltonians and reduced 3D
space are presented in ref 61.

It is known that periodic orbits exist at the center of
nonlinear resonances. Therefore, constructing a plot based
on periodic orbits that exist in a range of energies, we sketch
the resonance web of Keshavamurthy and co-workers. As a
matter of fact, the above-mentioned approaches for extracting
the dynamics from the quantum eigenstates rely on the
existence of stationary classical objects which act as organiz-
ing centers in phase space. For more than a century
mathematicians have explored dynamical systems, and now
we have theories for a systematic search of the phase space
structure. In the following section we present in brief the
bifurcation theory of Hamiltonian systems.

4. Elementary Bifurcations of Equilibria and
Periodic Orbits

Generally, we do not expect significant changes in the
topography of a molecular potential energy surface as its
parameters are varied. Minima, saddles, and maxima will
smoothly change their energies and positions, but they will
remain minima, saddles, and maxima. However, it does
happen at some critical values of the parameters to observe
catastrophic changes such as the conversion of a minimum

to a saddle and then to a maximum with the simultaneous
appearance of two new minima. This kind of branching we
call bifurcation. Similar behaviors can be traced in classical
trajectories such as periodic orbits and tori. Regular trajec-
tories which stay close to the above stationary objects may
turn chaotic and escape after the event of a bifurcation.
Obviously, bifurcation phenomena lead to significant qualita-
tive changes in the dynamics. They are of great importance
in celestial mechanics, and it turns out that they are important
for molecules, too, provided quantum mechanics show a
correspondence.

We call those bifurcations elementary which appear in the
simplest nonlinear systems by varying one or two parameters.
Comparing these systems with the complicated multidimen-
sional molecular PES, we may think that a simple one-
dimensional Hamiltonian is only of pedagogical use. This
is not true, since we can show that, at the critical value of
the parameter at which a bifurcation occurs, even a multi-
dimensional system can be reduced to one of lower dimen-
sion by using the central manifold theorem, and then we can
transform it by using normal forms into a simple Hamilto-
nian.7 The mathematical theory of bifurcations in dynamical
systems is well developed, and there are excellent books6,7

and review articles146 to introduce the subject. In this section
we discuss how bifurcations appear in the simplest nonlinear
Hamiltonians, those with a cubic or quartic potential.
Afterward, we demonstrate that the same bifurcations do
occur in the periodic orbits of molecules with three and more
degrees of freedom.

In Table 1 we summarize the elementary bifurcations and
example potentials which develop these bifurcations. Ex-
planations will be given in the following sections.

4.1. Model Hamiltonians
For a system of one degree of freedom with a Hamiltonian

the trajectories are calculated by integrating Hamilton’s
equations

Table 1. Examples of Potential Functions Which Show Elementary Bifurcations of Equilibrium Points and Periodic Orbits

bifurcation potential

center-saddle147

V(q) ) 1
3

q3 - 1
2
Rq2 - �q - γ

pitchfork147

V(q) ) 1
4

q4 - 1
3
Rq3 - 1

2
�q2 - γq - δ

period doubling and m:n resonances148

V(x, y) ) 1
2

(ωx
2x2 + ωy

2y2) + εx2y

complex unstable149 (Hamiltonian Hopf)

V(x, y, z) ) 1
2

(ωx
2x2 + ωy

2y2 + ωz
2z2) - εx2y - ηx2z

H(q, p) ) 1
2

p2 + V(q) (27)

q̇ ) dH
dp

(28)
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q is the generalized coordinate and p its conjugate momen-
tum. The stationary (equilibrium) points are located by
requiring q̇ ) ṗ ) 0, which implies p ) 0 and dV(q)/dq )
0; that is, the roots of the force (generally a nonlinear
equation) are the equilibrium points of the system.150,151

By taking a general cubic potential,

the equilibrium points are then the roots of the quadratic
equation

with a discriminant defined as

In order that eq 31 has two real roots (equilibrium points),
D g 0 is required. Thus, the parabola D ) 0 defines the
region in the two-parameter space, (�,R), where these two
roots exist. Assuming R ) 0, Figure 2 shows the evolution
of the two equilibria by varying the parameter �. This graph
is a typical continuation/bifurcation diagram (CB) that
depicts a center-saddle bifurcation. We notice that there are
no equilibrium points for negative values of � and that at �
) 0 the double root signals the genesis of the center-saddle
bifurcation. The two branches correspond to stable (solid
line) and to unstable (dashed line) equilibrium points. Stable
means that trajectories close to this point will remain in the
nearby region, whereas unstable points mean that nearby
trajectories will deviate from them.

By plotting the potential function for several values of �,
we can identify the minima and saddles. For � < 0, there
are no equilibrium points; for � > 0, there are two equilibrium
points, one minimum and one maximum; and for � ) 0,
there is only a saddle at q ) 0. For nonzero values of R, the
CB diagram remains the same, since by translating the origin
of the coordinate to zero (q′ ) q - R/2; �′ ) � + R2/4), we

take the standard form of the center-saddle bifurcation, q′2
- �′ ) 0. In Figure 3 several trajectories are plotted for �
) 1 in the phase plane, (q,p). The dashed line denotes the
separatrix of the two types of motions allowed for this
dynamical system: closed stable orbits and unbound orbits.
This phase space graph is typical of a center-saddle
bifurcation.

For the case of a quartic potential

the equilibrium points are given by

This cubic equation can be reduced to a two-parameter
equation by the transformations

The reduced cubic polynomial is

and the discriminant is defined by

The roots of eq 38 are as follows:
(i) one real root and two imaginary for D > 0,
(ii) three different real roots for D < 0, and
(iii) three real roots, with two of them being equal for D )
0. Plotting the discriminant in the parameter space (λ,µ), we
get a cusp curve that defines the values of (λ,µ) where the
discriminant is zero. Thus, crossing this curve from positive
to negative values of D, we pass from one to three

ṗ ) -dH
dq

(29)

V(q) ) 1
3

q3 - 1
2
Rq2 - �q - γ (30)

dV(q)/dq ) q2 - Rq - � ) 0 (31)

D ) R2 + 4� (32)

Figure 2. Continuation/bifurcation diagram for a center-saddle
bifurcation of a cubic potential (Table 1). The coordinates q of the
two equilibria are shown as a function of the parameter � and for
R ) 0. The continuous line denotes the stable equilibrium point
(minimum) and the dashed line the unstable equilibrium point
(maximum). Reprinted with permission from ref 147. Copyright
2006 World Scientific Publishing Company.

Figure 3. Trajectories which portray the phase space structure in
the region of a center-saddle (CS) bifurcation (� ) 1). Reprinted
with permission from ref 147. Copyright 2006 World Scientific
Publishing Company.

V(q) ) 1
4

q4 - 1
3
Rq3 - 1

2
�q2 - γq - δ (33)

dV(q)/dq ) q3 - Rq2 - �q - γ ) 0 (34)

x ) q - R/3 (35)

µ ) R3

3
+ � (36)

λ ) 2R3

27
+ R�

3
+ γ (37)

x3 - µx - λ ) 0 (38)

D ) -µ3

27
+ λ

4
(39)
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equilibrium points. A double degeneracy of equilibrium
points is encountered on the cusp curve.

The CB diagram for λ ) 0 and varying the parameter µ is
shown in Figure 4. This is a typical pitchfork bifurcation.
The introduction of a second parameter (λ * 0) alters the
CB diagram as shown in Figure 4. Comparing the two
continuation/bifurcation diagrams for λ ) 0 and λ * 0, we
can see that the unstable branch in the pitchfork bifurcation
(dashed line) becomes the unstable branch of a CS bifurca-
tion, whereas one stable branch in the pitchfork bifurcation
is the stable branch of the CS bifurcation. We can also see
that the parent family in the pitchfork bifurcation evolves to
a hysteresis. We can think of this continuation/bifurcation
diagram as a folded surface in the (λ,µ,x) space. The size of
the gap in the CB curves depends on the value of the
parameter λ.

The three equilibria in the quartic potential are two minima
and one maximum. Trajectories plotted in the phase plane
(x,p) are shown in Figure 5 for the symmetric double well
potential (λ ) 0 and µ ) 1). The separatrix (dashed line)
emanates from the maximum of the potential, and it separates
the two types of motion encountered in this system.

4.2. Periodic Orbits
Systems of one degree of freedom are integrable, and

bound trajectories are periodic. Moving to two degrees of
freedom and correspondingly to a four dimensional phase
space, a totally new world is opened with periodic orbits,
tori, chaotic trajectories, homoclinic and heteroclinic orbits,
and cantori. Several books describe all these classical
mechanical objects at different levels of mathematical rigor
and comprehension.6,7,152

The 2D model potential with the cubic coupling term given
in Table 1 is one of the most studied by both the astrophysical
and molecular communities. Values for the parameters (ω1,
ω2, ε) in the potential are given in ref 148. From the
bifurcation diagram shown in Figure 6 (Figure 1 in ref 148),
new periodic orbits emerge every time the frequencies
become commensurate (mω1 + nω2 ) 0) as energy varies.
These families of periodic orbits are predicted from the
theorems of Poincaré-Birkoff,153 which state that com-
mensurate tori are destroyed to produce stable and unstable
POs.

The theory of periodic orbits was mainly developed to
study celestial mechanics. However, we can see the relevance

Figure 4. Continuation/bifurcation diagrams of a quartic potential
(Table 1) by varying the parameter µ. λ ) 0 portrays a pitchfork
bifurcation and λ ) 0.01 a CS bifurcation. Continuous lines denote
stable equilibria and dashed lines the unstable equilibrium points.
Reprinted with permission from ref 147. Copyright 2006 World
Scientific Publishing Company.

Figure 5. Phase space structure of a pitchfork bifurcation that
corresponds to a symmetric double well quartic potential. Reprinted
with permission from ref 147. Copyright 2006 World Scientific
Publishing Company.

Figure 6. Continuation/bifurcation diagram in the (E,y) plane for
the 2D potential given in Table 1. The labels (m:n) denote the
resonance condition between the two vibrational modes in the
principal families and the most important bifurcations (branches).
Solid lines correspond to stable periodic orbits, dashed lines to
unstable. Each point on the curve corresponds to a periodic orbit
with initial conditions x ) 0 and px determined from the conserva-
tion of total energy. Reprinted with permission from ref 148.
Copyright 1989 American Institute of Physics.
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of periodic orbits to molecules by inspecting the semiclassical
formula of the quantum propagator, the Fourier transform
of which provides the density of states19,154

Ĥ is the Hamiltonian operator for a system with N degrees
of freedom. q are the coordinates, and S(q2,q1,t) is the action
along the trajectories from the initial configuration point q1

to the point q2 arriving at the time interval t. Invoking the
stationary phase approximation for trajectories returning to
the initial configuration in the time period T

and recalling some basic rules of Hamiltonian mechanics,62

we can prove that the major contributions to the integral in
eq 40 come from the periodic orbits19

Further support for the importance of periodic orbits in
computing molecular spectra came from the scarring theory
of Heller. Heller72 demonstrated with model potentials that
the eigenfunctions may stay localized around unstable
periodic orbits. It turns out that the scarring of the wave
functions by stable or the least unstable periodic orbits is a
general phenomenon for polyatomic molecules, too. Overtone
states are associated with isolated POs, and hence, it is
important to locate those periodic orbits with the shortest
periods.

For a polyatomic molecule with N degrees of freedom, qi

(i ) 1,..., N) generalized coordinates, and pi (i ) 1,..., N)
conjugate momenta, the location of periodic orbits requires
the solution of a 2-point boundary value problem

where T is the period of time after which the trajectory
obtained by integrating the equations of motion returns to
its initial point in phase space, x0 ) x(0). For convenience,
we write coordinates and momenta as the components of
the generalized coordinate vector x,

where + denotes the transpose of the 2N-D column vector.
The equations of motion are then written as

where J is the symplectic matrix

0N and IN are the zero and unit N × N matrices, respectively.
The equilibrium points are defined by requiring ẋ ) 0 or

To locate a PO with a period T, we usually linearize the
difference of equations of motion of two neighboring
trajectories,

for obtaining the Variational equations

∂2H(x(t)) denotes the matrix of second derivatives of the
Hamiltonian evaluated at the original trajectory x(t) for time
t.

The general solution of eq 49 can be expressed by
evaluating the fundamental matrix at time t, Z(t).155 At t )
0 it is valid

The solution of eq 49 is then given by

where �(0) describes the initial displacement from the
trajectory x0.

For periodic orbits the fundamental matrix at t ) T,

is called the monodromy matrix, the eigenvalues of which
determine the stability of the periodic orbits.7 Because of
the symplectic property of Hamiltonian systems,150,151 if λi

is an eigenvalue of the monodromy matrix, then its complex
conjugate λi

*, as well as the λi
-1 and (λi

-1)*, are also
eigenvalues.

The properties of the monodromy matrix and the different
cases of stability have been described before.156 For conser-
vative Hamiltonian systems, one pair of eigenvalues of the
monodromy matrix is always equal to one. For a system of
three degrees of freedom, the other two pairs are represented
on the complex plane, as is shown in Figure 7. As energy
varies,157 the eigenvalues of stable periodic orbits move on
the unit complex circle. When the eigenvalues are out of
the unit circle but on the real axis, the periodic orbit is single
or double unstable, and finally four complex eigenvalues may
come out of the unit circle and the PO is characterized as
complex unstable. When the eigenvalues collide, new
periodic orbits emerge. Collisions at +1 signal the birth of
center-saddle or pitchfork bifurcations. Collisions at -1 give
a period doubling bifurcation. Generally, every time the
stability parameter of a stable PO, σ ) ln(λ)/T, satisfies a
relation, T/(2π/σ) ) m/n, with m and n being integers, then
new periodic orbits are born with a period nT. The theory
of Krein, Gelfand, and Lindskii155 treats the change of
stability of periodic orbits as the parameters of the system
vary. Particularly for molecular Hamiltonians, see refs 148
and 156.

Complex instability appears in 3D Hamiltonian systems
and higher and may result in the genesis of new POs or
tori.158,68 We expect this kind of bifurcation to appear more
often in polyatomic molecules, but at present there is no
spectroscopic manifestation of this type of bifurcation. The
3D model potential of Table 1 provides an example of a

〈q2|exp(-iĤt/p)|q1〉 )

∑
roots

[(2πip)N|∂q2

∂p1
|]-1/2

exp(iS(q2, q1, t)/p (40)

∂S(q, q, T)
∂q

) 0 (41)

[∂S(q2, q1, T)

∂q1
+

∂S(q2, q1, T)

∂q2
]

q1)q2)q
) p2 - p1 ) 0

(42)

x(T) - x(0) ) 0 (43)

x ) (q1, ..., qN, p1, ..., pN)+ (44)

ẋ(t) ) J
∂H(x)

∂x
≡ J∂H(x) ≡ J∇H(x) (45)

J ) ( 0N IN

-IN 0N
) (46)

∇H(x) ) 0 (47)

�(t) ) x'(t) - x(t) (48)

�̇(t) ) J∂2H(x(t)) �(t) (49)

Z(0) ) I2N (50)

�(t) ) Z(t) �(0) (51)

M ) Z(T) ) ∂x(T)
∂x0

(52)
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complex unstable 1:2:2 periodic orbit.149 It was shown that
nearby trajectories to this PO diverge exponentially with
simultaneous rotation (Figure 8), with a frequency which is
manifested by computing the quantum mechanical autocor-
relation function.149

POMULT is a Fortran code for locating periodic orbits
and equilibrium points in Hamiltonian systems based on
2-point boundary value solvers159,160 which use multiple
shooting algorithms.161 The code has mainly been developed
for locating periodic orbits in molecular Hamiltonian systems
with many degrees of freedom, and it utilizes a damped
Newton-Raphson method and a secant method. Stationary
points and periodic orbits are located numerically with a new
version of the POMULT program written in Fortran95.162

With the multiple shooting methods, we convert the 2-point
boundary value problem to m initial value problems; that is,
we search for the appropriate initial values of coordinates

and momenta that satisfy the boundary conditions and the
continuity equations.162 Analytical first and second deriva-
tives of the potential function required for the solution of
the equations of motion and the variational equations may
be computed by the AUTO_DERIV program, a Fortran code
for automatic differentiation of an analytic function of many
variables written in Fortran.163

The characteristic bisection method gives an alternative
algorithm for finding the roots of nonlinear algebraic and/or
transcendental equations.164 It has been applied to the LiNC/
LiCN molecular system to locate periodic orbits and to
construct the continuation/bifurcation diagram of the bend
mode family.165 The algorithm is based on the characteristic
polyhedra, which define a domain in phase space where the
topological degree is not zero. The results are compared with
previous calculations obtained by the Newton multiple
shooting algorithm. The characteristic bisection method not
only reproduces the old results but also locates new sym-
metric and asymmetric families of periodic orbits of high
multiplicity.165

5. Triatomic Molecules
Spectroscopy lightens only specific events of the molecule,

leaving most of its states in the dark. Hence, spectroscopic
Hamiltonians are the natural way to model molecular spectra,
although they are based on assumptions such as the
dimensionality of the active space and the number and nature
of resonances that influence the spectrum. Global Hamilto-
nians, especially ab initio, are free of these assumptions. A
global method to analyze complex spectra and understand
the flow of intramolecular energy was introduced by Davis.166

Analysis of experimental or theoretical spectra by controlling
their resolution allows one to systematically unveil the
parent-daughter relation of the spectral lines and progres-
sions, which is the equivalent of following the flow of energy
in time and the details of the trajectory in phase space. This
method has a relation to the recently introduced methodology
of Keshavamurthy and co-workers61 which requires the
construction of the resonance map via the frequency analysis
of trajectories instead.

All the methods presented up to now for extracting the
dynamics from complex vibrational spectra rely on revealing
the classical stationary objects that localize the eigenfunc-
tions. We believe that, as spectroscopic effective Hamilto-
nians cannot be produced without first identifying the
equilibria of the potential energy surface, equivalently the
localization of periodic orbits is a prerequisite for a profound
analysis of molecular dynamics.

Over the past few years we have constructed continuation/
bifurcation diagrams of periodic orbits by varying the total
energy for a plethora of molecules spanning a range from
conventional ones9-11 to van der Waals clusters,167-169

unbound molecules (FH2),170 and, recently, biomolecules.103,104

All these studies demonstrate the localization of overtone
states along fundamental (principal) and bifurcating POs and
the universality of elementary bifurcations such as CS.

We initially determined the importance of CS bifurcations
of periodic orbits in studies of the isomerization dynamics
in double well potential functions.171 These POs connect the
two minima and scar the isomerizing wave functions, i.e.
eigenfunctions with significant probability density in both
wells. Their birth is due to the unstable periodic orbit which
emanates from the saddle point of the potential energy
surface. However, even below the potential barrier, a series

Figure 7. Eigenvalues of the monodromy matrix for a molecule
with three degrees of freedom. There are three pairs of complex
conjugate eigenvalues, one of which is always equal to one (not
shown). The other two pairs move in the complex plane as energy
varies. The positions of these eigenvalues with respect to the
complex unit circle determine the stability of the PO.

Figure 8. Projection of the spiral invariant curve from a complex
unstable periodic orbit. The analytically obtained points (open
squares) are compared with the numerically calculated points (filled
squares), which in most cases coincide. Reprinted with permission
from ref 149. Copyright 1994 The American Physical Society.
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of CS bifurcations of periodic orbits pave the way to the
isomerization process. A recent example is methylene,
CH2(ã1A1).172,173

5.1. Methylene
The 3D PES for the ã1A1-state of CH2 was taken from the

literature.174,175 The potential has two equivalent minima of
C2V symmetry separated by a linear saddle (1.095 eV). From
each minimum, a number of families of stable periodic orbits
emanate, at least as many as the number of normal modes,
the characteristic motions of which they portray.176 For saddle
points the principal periodic orbits are unstable.177 A projec-
tion of the continuation/bifurcation diagram of POs consists
in plotting the frequencies (ω ) 2π/T) of the periodic orbits
as functions of the total energy. Such a CB diagram is shown
in Figure 9.172

The continuous lines denote the frequencies of periodic
orbits as functions of the total energy E in wavenumbers.
A3 is the family that corresponds to the bend normal mode,
A2 to the symmetric stretch, and A1 to the antisymmetric
stretch mode. The harmonic frequencies are estimated to be
ω1 ) 3069 cm-1 for the antisymmetric stretch, ω2 ) 2906
cm-1 for the symmetric stretch, and ω3 ) 1382 cm-1 for
the bend. The continuation lines in Figure 9 do not
distinguish stable from unstable POs. The A1 family remains
stable for the energy range shown, but the A2 symmetric
stretch family becomes early single unstable and after its
bifurcation at about 0.7 eV double unstable. The bifurcating
A2A1 family is initially single unstable, but it becomes stable
at energies above the saddle point. The A3 is stable up to
the barrier of isomerization, after which it becomes single
and later double unstable. We may conclude that extended
chaos sets in at energies above the barrier of linearization.

In agreement with previous studies, a cascade of CS
bifurcations appears as we approach the saddle point of the
linearized molecule.9 This scenario is typical as the parent

family approaches the bifurcation critical energy. Its fre-
quency levels off and two new families appear with one
branch showing high anharmonicity. As energy increases,
the frequency of the daughter family with the most anhar-
monic behavior starts leveling off again and a new CS
bifurcation takes place. The mechanism of generating this
cascade of center-saddle bifurcations can be understood as
a cascade of resonances between coupled oscillators.178

Figure 10 shows representative periodic orbits projected
in the (R,r) Jacobi coordinate plane and overlaid by quantum
mechanical eigenfunctions. The A1 PO has mainly excitation
along the angle Jacobi coordinate. The energies of these
periodic orbits are above the barrier of linearization.179 The
CS_I1 represents periodic orbits which surpass the barrier
of isomerization. These POs also originate from a center-
saddle bifurcation, and they mark isomerizing quantum states.
Notice the low probability amplitude at the top of the barrier.

The vibrational energy levels for zero total angular
momentum (J ) 0) were determined using the recursive
Lanczos algorithm.128 A total of 602 vibrational states was
found below the dissociation limit. To investigate the
statistical behavior of the bound state spectrum, the nearest
neighbor spacing distribution (NNSD) and the ∆3 distribution
were computed. The spectrum was first unfolded using the
method of Haller et al.180 so that the mean nearest neighbor
spacing is close to unity. The NNSD is close to the Wigner
distribution,181 indicating that the short-range fluctuation of
the vibrational spectrum is mostly chaotic. The long-range
∆3 distribution182 also indicates the dominance of the chaotic
character.

The classical frequencies are compared with the energy
difference between adjacent quantum eigenenergies for the
three series of overtone vibrational progressions. In a rather
simple approach, we compare classical and quantum me-
chanical eigenfrequencies by shifting the quantum energies
by the zero-point-energy and we plot the energy differences
with respect to the upper level. As we can see in Figure 9,
the anharmonicity of the overtone states closely follows that
of the frequencies of the periodic orbits. Furthermore, we
conclude that, in spite of the irregular behavior predicted by
the statistical measures for CH2 (ã1A1), the overtone states
of the bending mode are regular and well localized in

Figure 9. Periodic orbit continuation/bifurcation diagram of the
ã1A1-state of CH2. A3 is the family that corresponds to the bend
normal mode, A2 to the symmetric stretch, and A1 to the
antisymmetric stretch mode. The symbols represent the energy
spacings between neighboring quantum states of the overtone
progressions; squares for the antisymmetric stretch, diamonds for
the symmetric stretch, and triangles for the bend. CS denotes
periodic orbits emanated from center-saddle bifurcations. Note that
the even quantum number states for the antisymmetric stretch are
shown. Reprinted with permission from ref 173. Copyright 2005
American Institute of Physics.

Figure 10. Regular localized wave functions of the bending mode
of methylene marked by periodic orbits at approximately the same
energy. Reprinted with permission from ref 172. Copyright 2004
Elsevier Publishing Company.
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configuration space up to and above the barrier to lineariza-
tion (Figure 10). This was one of the conclusions of Green
et al.183 These investigators carried out an extensive ab initio
study of the two lowest singlet excited states of methylene,
ã1A1 and b̃1B1, which are degenerate for linear geometries
and are separated for planar geometries because of Renner-
Teller interaction. Since this work leads to conclusions
similar to ours in spite of the fact that it takes the Renner-
Teller interaction into account, we may infer that there is
no strong interaction between the two surfaces.

It turns out that the cascade of center-saddle bifurcations
of periodic orbits is a generic mechanism to approach
isomerization or dissociation thresholds, as previous studies
on triatomic molecules have revealed.9-11 The stable or the
least unstable branches of these bifurcations trace the most
stable regions in phase space where the quantum mechanical
eigenfunctions are localized. Spectroscopic evidence for such
states has been found for HCP.9 The spectroscopic charac-
teristic of this molecule is a 2:1 Fermi resonance between
the CP stretch and bend.59 Jacobson and Child184,185 studied
a spherical pendulum model Hamiltonian of the Fermi
resonance and found the dip in the energy level spacing,
which is characteristic of the saddle point. However, as the
authors point out, one must be aware of the differences above
the barrier states for molecules which mimic a spherical
pendulum model, such as HCP, and Renner-Teller systems
such as the one studied in this article. Although spectroscopic
differences for these two molecules, HCP and CH2, are
expected, the classical interpretation by periodic orbits is the
same; the quantum states are associated with center-saddle
bifurcations. Above the barrier, the CS periodic orbits are
those which connect the two minima, and they have been
named isomerizing states.

An interesting question is whether CS bifurcations below
and above the barrier have the same origin. Those which
are born below the barrier may be thought of as the result
of the rapid change in the anharmonicity along the reaction
path, which brings the system into multiple resonances as
energy varies. On the other hand, those above the barrier
are associated with the unstable periodic orbits originated
from the saddle point and the Newhouse wild hyperbolic
set.186,187 A study related to the spectral patterns of
acetylene-vinylidene isomerization has been published by
Yang, Tyng, and Kellman.188

We have also studied low-lying scattering resonances of
the CH2 system by the filter-diagonalization method based
on the Chebyshev propagation, and we have examined their
roles in both unimolecular and bimolecular reactions.173 A
few hundred narrow resonances were found in the energy
range up to approximately 4000 cm-1 above the lowest
dissociation asymptote. They exhibit a large variation in their
widths, suggesting strong state specificity. On average, the
resonance width increases with energy, but its fluctuation
decreases. While the resonances are mostly isolated at lowest
energies, they increasingly overlap as the energy increases.
These resonances can be considered as an extension of the
highly excited vibrational states above the dissociation limit
and have properties that resemble those of the bound state
spectrum. Indeed, analysis of the classical phase space also
indicates that many periodic orbits extend smoothly into the
continuum. This observation implies that a good understand-
ing of the resonances can be achieved by studying the highly
excited vibrational levels. Below 2000 cm-1, where the
resonances are mostly isolated, the unimolecular decay into

the CH + H channels is dominated by individual CH2

resonances. The decay of these resonances is found to
conform to neither the mode-specific nor the statistical state
specific limits. This is consistent with our understanding of
the vibrational dynamics near the dissociation limit, which
shows regularity embedded in a largely chaotic classical
phase space. Indeed, the fluctuation of the resonance width
is reasonably described by the Porter-Thomas distribution189

stemming from random matrix theory. However, significant
regularity persists in both highly excited bound states and
low-lying resonances. In particular, we have found reso-
nances possessing clear nodal structures related to local and
hyperspherical vibrational modes. The cascade of CSiA
families shown in Figure 9 converges to the dissociation
limit.173

Because of these regular resonances, statistical theories
such as the RRKM190 and the statistical adiabatic channel
model (SACM)191 overestimate the averaged quantum decay
rate in this energy range. The coexistence of regular and
irregular resonance states makes the CH2 system an inter-
mediate case between the two limiting cases of unimolecular
reactions. Like other XH2 hydrides such as water, the CH2

system presents an interesting case for studying mode-
selective chemistry and intramolecular vibrational energy
redistribution. Kinematic factors such as the mass disparity
between H and X favor the existence of local modes, which
in turn suggests the possibility of selectively exciting one
of the two C-H bonds. For an isotopomer CHD, for
example, mode-selective excitation might lead to preferential
branching of the products, namely CD and CH.2 It is
interesting to note that this system differs from completely
regular systems such as HCO in that the mode-selective
unimolecular reaction is embedded in a largely chaotic
classical phase space.

The bimolecular reaction is also dominated by resonances.
The results173 unequivocally confirm that the oscillation
structure observed in bimolecular reaction probabilities is
due to resonances, many of which are long-lived and overlap
with each other. As a result, it is difficult to assign the peaks
in the reaction probability to individual resonance states.
However, the lifetimes of many resonances are sufficiently
long to permit a statistical treatment of the bimolecular
reaction, as illustrated in recent work by us and others.173

Resonances affecting the bimolecular reaction exhibit very
different characteristics from those that dominate the uni-
molecular reaction. The former are found to have significant
amplitudes in both the reactant and product channels, whereas
the latter deposit their energy mainly in the C-H vibration.
The detailed analysis presented in this work173 allowed us
to gain deeper insight into the roles played by the long-lived
resonances in both the unimolecular and bimolecular reactions.

Contrary to the CH2 molecule, which displays strong
chaotic dynamics, HCO and DCO35,96 display regular be-
havior, even above the dissociation threshold, while HO2 has
regular states embedded among chaotic ones,192 thus present-
ing an intermediate case. A periodic orbit analysis and a
classification of the vibrational overtone levels of DCO and
HCO have been presented in ref 96. For DCO the states are
organized in terms of increasing polyad quantum number P
) n1 + n2 + n3/2. It was shown that the members of the
pure overtone series are guided by periodic orbits, even in
the continuum. Once more, it is demonstrated that the highly
anharmonic states localized along the dissociation coordinate
correspond to orbits originating from center-saddle bifurca-
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tions in the classical phase space. A detailed assignment of
the polyad P ) 8 has been given by Jung, Taylor, and
co-workers60,134 using a spectroscopic Hamiltonian and their
method to plot probability densities and phases of semiclas-
sical wave functions.60 Their results are summarized in Figure
11.

Calculations for the isotopomer molecule HCO have
revealed a period doubling bifurcation of the R principal
family of POs which do leave their trace on the nodal
structure in a class of eigenfunctions (see Figure 5 in ref
96).

We have provided a thorough analysis of the vibrational
spectrum and dynamics of the HO2 system, based on a new
and accurate potential energy surface (PES).192 It is shown
that the vibration of HO2 is quite regular at low energies,
but increased irregularity at higher energies prevents the
assignment of all vibrational levels. Overall, the vibrational
spectrum can be considered as an intermediate case with
mixed regularity and irregularity. An interesting observation
is the regularity in the OO stretch overtones up to the H +
O2 asymptote, which is due to the emergence of center-saddle
bifurcations. This conclusion is in contrast to that obtained
earlier on the semiempirical double many-body expansion
(DMBE) IV PES, which showed complete chaotic vibration
at high energies.193 It is not yet clear how the difference in
the PES will impact the dynamics of both unimolecular
reactions and bimolecular reactions. Results at J ) 0 have
demonstrated substantial changes in the reaction probability.

From the above discussion it becomes apparent that,
establishing a correspondence between periodic orbits, on
one hand, and quantum mechanical energy levels, on the
other hand, not only provides an assignment, which is free
of the coordinate system used, but also reveals details of
the dynamical behavior in regions of the phase space where
the dynamics is dominated by resonances. Assignments in
terms of periodic orbits are often more meaningful than

assignments in terms of normal mode quantum numbers. The
most interesting observation is the existence of center-saddle
bifurcations in the classical phase space, which lead to the
birth of new state progressions at energies well above the
global minimum.

5.2. Ozone
5.2.1. Ground State O3(X1A2)

The study on the ground electronic PES of ozone was
carried out with an ab initio potential energy surface that is
global; that is, it covers the three identical C2V (open) minima,
the D3h (ring) minimum, as well as the O(3P) + O2(3Σg

-)
dissociation threshold.99 The electronic structure calculations
were performed at the multireference configuration interac-
tion level with complete active space self-consistent field
reference functions and correlation consistent polarized
quadruple-� atomic basis functions. An analytical representa-
tion was obtained by a three-dimensional cubic spline. The
calculated potential energy surface has a tiny dissociation
barrier and a shallow van der Waals minimum in the exit
channel. The ring minimum is separated from the three open
minima by a high potential barrier and therefore presumably
does not influence the low-temperature kinetics. The dis-
sociation energy is reproduced up to 90% of the experimental
value. All bound states of nonrotating ozone up to more than
99% of the dissociation energy were calculated using the
filter diagonalization technique and employing Jacobi coor-
dinates. The three lowest transition energies for 16O3 are
1101.9 cm-1 (1103.14 cm-1), 698.5 cm-1 (700.93 cm-1), and
1043.9 cm-1 (1042.14 cm-1) for the symmetric stretch, the
bending, and the antisymmetric stretch modes, respectively;
the numbers in parentheses are the experimental values. The
root-mean-square error for all measured transition energies
for 16O3 is only 5 cm-1. The comparison is equally favorable

Figure 11. Part a shows the density of the semiclassical wave functions of all 45 eigenstates of polyad 8 of DCO plotted as functions of
the angle variables (ψm,ψn) in the [-π,π) range. Darker gray means higher density. Each little frame is labeled above by the state and the
class assigned to this state. Part b shows in exactly the same arrangement the phases of the wave functions. Here, white means phase in the
interval [0,π/2), light gray means phase in the interval [π/2,π), dark gray in [π,3π/2), and black phases in [3π/2,2π). Reprinted with
permission from ref 60. Copyright 2007 American Chemical Society.
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for all other isotopomers, for which experimental frequencies
are available. The assignment is made in terms of normal
modes, despite the observation that with increasing energy
an increasing number of states acquires local-mode character.
At energies close to the threshold, a large fraction of states
is still unambiguously assignable, particularly those of the
overtone progressions. This is in accord with the existence
of stable classical periodic orbits up to very high energies
(see Figure 8 in ref 99 and also ref 194).

However, most interesting is the unusual dependence of
its formation rate constants on oxygen isotopes.195-199 For
example, the ratio of the rate constants for the reactions

with respect to the rate constant of 16O + 16O16O + M has
been found to vary between 0.92 and 1.50.200 The slower
reaction corresponds to the isotopes 18O + 16O16O and the
fastest one to the isotopes 16O + 18O18O. Other mass
combinations give ratios between these two extreme values.

Janssen et al.200 found a correlation with the zero point
energy (ZPE) change of the oxygen molecules participating
in the isotope exchange reactions. When the difference
between product and reactant ZPE is positive (endothermic
reaction), the lifetime of the complex increases. On the
contrary, when the ZPE change is negative (exothermic), the
lifetime decreases. Their argument that this correlation is
related to the association reaction is based on the lifetime of
the complex; the endothermicity acts as a potential barrier,
and thus, the complex lives longer than in exothermic
reactions.

These results inspired Schinke and co-workers201,202 to
develop a model potential that takes into account the ZPE
dependence by adjusting the potential energy surface in the
product channels so that the correct exothermicities and
endothermicities are matched.

Marcus and co-workers197,203,204 in a series of articles
presented statistical RRKM theories190 which satisfactorily
explain a large number of experimental data. However, to
accomplish the task, it was necessary to introduce ad hoc
parameters to justify deviations from the statistical behavior
assumed in RRKM theory. Other models have been pro-
posed, like that of Miklavc and Pyerimhoff.205

In earlier studies, the explanation of the ozone isotope
effect relied on the symmetry of isotopomers. However, later
on, kinetic studies defied the arguments based on symmetry.
The role of symmetry in the anomalous ozone mass effect
reappeared in the theory of Gao and Marcus,197 who claimed
that the number of states by which the rate constants are
calculated is different for the symmetric and asymmetric
ozone isotopomers. Calculations on an accurate global
potential energy surface (PES)99,206 revealed that the dynam-
ics of ozone to a large extent is regular, and that justifies a
non-RRKM behavior.

The pertinent quantum states for the dissociation (associa-
tion) of the molecules are those above the threshold energy,
and resonances are responsible for long lived intermediates.
Because of the localization of these resonances along periodic
orbits, it would be useful to construct continuation/bifurca-
tions diagrams for the three isotopomers of ozone, (m3,m1

- m2) ) (16,16 - 16), (16,18 - 18, and (18,16 - 16), and
see how the symmetry breaking by mass substitution affects
the CB diagram of the molecule. It is important for the
isotopically substituted ozone to define properly the masses

and coordinates. We employ Jacobi coordinates. Mass m3 is
connected with the distance (R) to the center of mass (CM)
of the diatom m1 - m2 with bond length (r). The angle γ is
the (m3-CM-m2) angle.

The CB diagram for the symmetric isotopomer of ozone,
(16,16 - 16), is shown in Figure 12a. SS denotes the family
of POs that corresponds to the symmetric stretch normal
mode, and accordingly, the AS family corresponds to the
asymmetric stretch and B to the bend normal mode. At
energy 0.16 eV the AS family turns from stable to unstable
via a pitchfork bifurcation (AS1). The number 2 denotes that
two families of periodic orbits emerge out of the bifurcation
of the asymmetric stretch (AS), each of which generates later
one center-saddle bifurcation, the CS1 families. The two AS1
POs have the same periods and morphologies, but they are
located in different regions of phase space.

The CS1 joins the bend family (B) at an energy about
1.65 eV, giving the double center-saddle bifurcation (sub-
critical (evolving inward with the parameter) and supercritical
(evolving outward with the parameter)). Because of the
localization of the new POs, we may consider that one family
of AS1 and CS1 is along the r1 bond and the other along
the bond, r2 ) r.

By breaking the symmetry of the molecule with the mass
combination of (16,18 - 18), the pitchfork bifurcation is
split to a single family which we would initially assign as
the asymmetric stretch, AS1, and a center-saddle bifurcation,
CS0, which appears at about 0.33 eV (Figure 12b).

For the two branches of the center-saddle bifurcation, we
use the symbols AS and AS2 for the sake of a clearer
correspondence with the branches in the symmetric molecule,
(16,16 - 16). The AS1 is initially the stable part of the old
AS and at higher energies follows one of the AS1 branches
of the symmetric case. In the new born center-saddle
bifurcation, CS0, the AS branch is the unstable part of the
old AS and the AS2 is the second branch of the old
degenerate AS1. We may think again in terms of local
modes. The AS1 low frequency mode is related to the 18 -
18 oscillator and the AS2 with the 16 - 18 bond for energies
below 0.9 eV. However, notice in Figure 12b that because
of the frequency mismatch between AS1 and AS2 the two
curves cross at about 0.9 eV. Above this energy, the AS2
POs are localized along the r bond and the AS1 along the R
bond. Thus, they reverse their initial morphologies.

aO + bOcO + M f aObOcO + M

Figure 12. Continuation/bifurcation diagrams of three isotopomers
of ozone in the ground electronic state (X1A2). SS denotes the
symmetric stretch, AS the antisymmetric stretch, B the bend
vibrational mode, and CS the center-saddle bifurcations.
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The breaking of degeneracy of the AS1 families in the
asymmetric molecule causes lifting of degeneracy in the CS
families above dissociation. We denote these center-saddle
families as CS1 and CS2. The family which appears first
joints smoothly the bend family, making a subcritical CS
bifurcation. The CS bifurcation emerging at higher energies
stays by itself at least for the energies studied. The dashed
lines do not mean that POs are unstable (on the contrary,
the AS2 is the stable branch of the CS0). We use broken
lines to distinguish the new types of motion. From now on,
the AS1 and CS1 families are denoted by solid lines and
the AS2 and CS2 by dashed lines.

Hence, for the mass combination (16,18 - 18), the AS1
starts from the minimum of the potential but because of the
crossing (at about 0.9 eV) with the AS2, the center-saddle
bifurcation CS2 emanates at lower energies than the CS1.

The CB diagram for the ozone isotopomer (18,16 - 16)
is shown in Figure 12c. In this case, the AS2 starts at low
energies, but because of the crossing with the AS1 at about
0.9 eV, the center-saddle bifurcation which emerges first is
the CS1. As we can see from the plots of POs, the
morphologies do not change by the different isotope com-
bination. If we make the assignment to local bonds again,
the low frequency AS2 is associated with the 18 - 16
oscillator and the AS1 with the 16 - 16 bond for energies
below 0.9 eV. Indeed, at low energies, the AS1 branch of
the (18,16 - 16) isotopomer coincides with the AS1 of the
symmetric molecule (16,16 - 16). Above the crossing point,
the morphologies of AS1 and AS2 are exchanged and the
AS2 POs localize the motion in the r bond.

It is important to note that the (16,16 - 18) isotopomer is
equivalent to the (18,16 - 16), and therefore, we expect its
bifurcation diagram to be exactly the same, but reversing
the role of local modes, AS1 and AS2, and center-saddle
bifurcations CS1 and CS2. Now, the low frequency AS1 is
associated to the local bond 16 - 18 and the high frequency
AS2 to the 16 - 16 bond, of course, before the crossing.
Because of the crossing of the two curves, the CS2 center-
saddle bifurcation appears first. Keep in mind that the (18,16
- 16) case has the lowest association rate and the (16,16 -
18) the second highest.

From the above analysis of continuation/bifurcation dia-
grams, we expect that the symmetry does play a role in
association/dissociation of ozone. We have shown that by
breaking the symmetry of ozone with isotopic substitution,
we generate a center-saddle bifurcation (CS0) and new types
of states (AS2) are born. They go above the dissociation
threshold and continue with the CS2 center-saddle bifurca-
tion. These states lead to excitation of the diatomic molecule
bond length r, and above the threshold, energies can be
assigned to long lived resonances. An immediate association
of these conclusions with the isotopic ozone effect is not
easy, since the calculations up to now are for total angular
momentum J ) 0. How the resonances evolve with higher
J values it worth studying.

5.2.2. Excited State O3(11B2)

Ozone is an important molecule for atmospheric chemistry
because of its role in shielding the earth from harmful UV
light. There have been numerous studies of its spectroscopy
and photodissociation.207 The absorption of the UV radiation
excites electronically the molecule to the (11B2) state.
Recently, we have carried out theoretical ab initio calcula-
tions and we have shown that the two absorption bands

observed, Huggins and Hartley, are due to the excitation of
the molecule from the ground electronic state to the (11B2)
state.97 The mechanism of the photodissociation of ozone is
complicated because of the involvement of several excited
states.208 Nevertheless, the construction of an analytical
function for the diabatic (11B2) state of ozone, as well as the
calculation of high quality quantum mechanical vibrational
eigenfunctions up to the dissociation threshold, as a result
of the previous studies, lead us to investigate further the
dynamics of the molecule in this excited state. The structure
of phase space, and, thus, reaction paths on this surface, has
been explored by the periodic orbits technique.147

The potential energy for the diabatic 1B2-state of ozone
has been described in detail in ref 97. The equilibrium
geometry of ozone in this excited state has Cs symmetry,
with one long bond and one short bond, in contrast to the
case of the ground electronic state, where the minimum is
of C2V symmetry with two equal bonds. Because of the
permutation symmetry of the molecule, there are three
equivalent minima and several saddle points among them.
The nuclear configurations are described in Jacobi coordi-
nates, which are the distance R of the long-bond oxygen atom
from the center of mass of the short-bond end atoms whose
bond length is r, and the angle γ between the vectors Rb and
rb. This Jacobi coordinate system is appropriate to describe
the dissociation of a triatomic molecule.

All quantum mechanical calculations were performed with
zero total angular momentum. The discrete variable repre-
sentation109 (DVR) was used to represent the Hamiltonian
matrix. Two types of calculations have been performed: filter
diagonalization209 and harmonic inversion.210 More details
are given in ref 98.

In Figure 13 isopotential curves are depicted in the (R,γ)
plane. The symbols on this picture mark the positions of the
saddle points. The saddle points which separate two equiva-
lent minima by exchanging their short and long bonds are
denoted by stars. The geometry of this saddle is better
portrayed in projections of the potential function in the plane
with the two bond lengths of the molecule as coordinates
shown in Figure 1 of ref 98. Note the differences in the

Figure 13. Potential energy contours for the diabatic 1B2-state of
ozone with periodic orbit plots. Energies are in electronvolts,
distances in Bohrs, and the angle in radians. The energies cover
the interval of (4.0-4.5) eV in 0.033 eV steps. The points shown
on the graph mark the saddle points 1 (dotted circle), 2 (stars), 3
(filled circle), and 4 (filled square). Reprinted with permission from
ref 147. Copyright 2006 World Scientific Publishing Company.
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values of r for the saddle points. Except for saddle-4, which
is of second order (i.e., it has two unstable directions with
imaginary frequencies), all the other saddles are of first order.
The stable degree of freedom for saddle-4 is the short-bond
r, as can be seen in Figure 13, where this saddle point appears
as a maximum.

The normal-mode frequencies are estimated to be ω3 )
1585 cm-1 for the short-bond local mode, ω1 ) 743 cm-1

for the long-bond local mode, and ω2 ) 400 cm-1 for the
bend. They are in an approximate ω2:ω1:ω3 ) 1:2:4
resonance.

The evolution of the normal-mode frequencies with
increasing energy is represented in the continuation/bifurca-
tion diagram (Figure 14). In this figure, the three principal
families of periodic orbits are shown and they are denoted
as S1 for the long-bond stretch, B1 for the bend, and S3 for
the short-bond stretch. B1 exhibits an early center-saddle
bifurcation, B1A, at about 3.475 eV with a tiny energy gap,
whereas a double period bifurcation is found for the S1 (S1A)
at about 3.78 eV. As we can see in this figure, the three
most anharmonic families, S1, S1A, and B1A, develop
cascades of center-saddle bifurcations as energy approaches
the dissociation limit (saddle-1) for the CSiB, the saddle-3
for the CSiC cascade, and saddle-4 for the CSiA, respec-
tively. We have not searched for the PO which point to
saddle-2. The center-saddle bifurcations are of similar type
as found in the model quartic potential (Table 1). The
frequency of the parent family levels off as energy ap-
proaches the critical energy of bifurcation, whereas new POs
appear after the bifurcation. The whole scenario is repeated
at higher energies, resulting in a cascade of such CS
bifurcations. The stability of POs in this bifurcation diagram
is not shown. In most cases, the anharmonic branch is stable,
at least for some energy, and the other branch is unstable,
and therefore, it is difficult to continue in energy. However,
for a three-dimensional system, such as ozone, a CS
bifurcation may show one single unstable and one double

unstable branch instead. For larger molecules with more
degrees of freedom, the number of combinations, of course,
increases.

In Figure 14 the point symbols denote the quantum
mechanical frequencies obtained from the energy differences
of adjacent eigenstates whose wave functions can be clearly
assigned. They are state overtone progressions of the short-
bond stretch (S3), bend (B1A), and long-bond stretch (S1).
The corresponding eigenfunctions have well recognized
nodal structures, and therefore, the number of quanta in each
mode can easily be assigned as (0,0,n3) for the S3 states,
(0,n2,0) for B1A, and (n1,0,0) for the S1 states. In order to
approximately account for the zero-point energy, the quantum
results are shifted to lower energies by the zero-point energy.
The energy differences are plotted with respect to the upper
level. More details are given in ref 147.

6. Polyatomic Molecules

6.1. Acetylene
A molecule that has retained the interest of spectroscopists

for decades is acetylene,21,22 particularly the problem of the
isomerization of acetylene to vinylidene.211 Contrary to
acetylene, for which numerous spectroscopic studies exist,
its isomer vinylidene has not been identified unequivocally,
although its existence is strongly supported by theoretical
calculations. The 6D quantum mechanical calculations of Zou
and Bowman55 for this four atom system reveal the difficul-
ties in obtaining accurate eigenfunctions and eigenenergies
at high vibrational states. Most of the quantum mechanical
investigations in the past were restricted to planar configura-
tions of the molecule with four or five degrees of freedom,
and only relatively recently were the acetylene vibrations
investigated with full dimensional quantum mechanics.212-214

Zou and Bowman215 extended these calculations at such
energies where isomerization of acetylene could be studied.
In this work, the authors use a new full dimensional potential
energy surface,216,217 which predicts a smaller barrier to
isomerization than an older version produced by Carter et
al.86,218 More recently, several groups have reported more
accurate quantum studies of the acetylene-vinylidene
system.219,220

Concerning the spectroscopy of acetylene, Jacobson et
al.21-23 studied dispersed fluorescence spectra in the energy
region around 15000 cm-1. This energy is close to the
vinylidene minimum. By fitting the spectroscopically as-
signed levels of the trans and cis bending modes to an
effective Hamiltonian, Jacobson et al. were able to show
normal to local mode transitions. In a companion paper, a
semiclassical analysis was presented for this two-dimensional
effective Hamiltonian.221 Although stretching normal to local
mode transitions are known80 and the asymmetric stretch of
acetylene does show such a transition, it was rather surprising
to find a similar bifurcation phenomenon for the bending
modes. Specifically, the trans bending normal mode exhibits
a local one, whereas the cis bending normal mode turns to
a counter-rotation for the two hydrogen atoms;221,23 that is,
the two hydrogen atoms execute rotations around the CC
bond in opposite directions. This normal-to-local transition
was observed in the full quantum studies of acetylene
vibration on a spectroscopically accurate force field.214

An early periodic orbit analysis of the principal and
bifurcating families of acetylene was presented by Prosmiti
and Farantos using a 6D potential function.84 However, most

Figure 14. Continuation/bifurcation diagram of the 1B2-state of
ozone. S1 denotes the long-bond mode, S1A its double period
bifurcation, S3 the short-bond mode, B1 the bend mode, and B1A
an early center-saddle bifurcation of B1. The symbol CS denotes
cascades of center-saddle bifurcations. CSiA is related with the S1
family, CSiB with the S1A family, and CSiC with the B1A family.
The arrows mark the energies of the saddle points (s-i) in the
potential. PO families related with the s-2 have not been located.
Reprinted with permission from ref 98. Copyright 2004 American
Institute of Physics.
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of the families located in this study were restricted in the
plane, and thus, periodic orbits that come out of the plane,
such as the counter-rotation, were not sought for. In a more
recent publication,85 we revisited the problem of the POs of
acetylene by using a potential energy function which was a
refinement of the Carter et al.86 potential based on the
accurate ab initio calculations of Stanton and Gauss.216,217

The more pronounced difference between the two functions
is the height of the barrier to isomerization of vinylidene to
acetylene. In the old version, the barrier’s height is 0.373
eV, while in the new one it is 0.107 eV. The energy of the
vinylidene minimum has also changed. Relative to the
acetylene minimum, it is 1.735 eV in the Carter et al.
potential and 1.991 eV in the new function. The location of
POs has been done in a Cartesian coordinate system with
twelve degrees of freedom. The momenta were adjusted to
ensure zero total angular momentum. However, we obtained
plots of the trajectories in the diatom-diatom (CH-CH)
coordinate system. Newton-Raphson multiple shooting
techniques to find the periodic orbits162 were employed.

Figure 15a contains the continuation/bifurcation diagram
of the cis and trans bending families, whereas a magnification
of it is depicted in Figure 15b. For comparison with the work
of Jacobson et al.,23 where the even quantum number bending
states are assigned, we have multiplied the frequencies by
two. The trans family shows a pitchfork bifurcation at the

energy of 0.289 eV, with the new families remaining stable
for most energies. The TR family becomes stable again at
0.42 eV. By projecting the trajectory in the (θ1,θ2) plane,
we find the bifurcating TR1 POs almost parallel to one of
the angles, thus showing their local character. The stability
of the bifurcating periodic orbits (TR1) means that the region
of phase space around them is less chaotic, and this explains
the remark of Jacobson et al.23 that the spectrum becomes
less complex at higher energies.

For the cis bending principal family, it was initially located
in an out of plane periodic orbit at the energy 0.253 eV,
CIS1. However, the counter-rotation periodic orbits emerge
at the energy of 0.335 eV, ROT1. We see that the CIS family
has turned to unstable at 0.252 eV, and it becomes stable
again at the bifurcation energy of ROT1. The counter-rotation
POs are unstable.

Comparing Figure 15b with the two-dimensional quantum
results shown in Figure 7 of the Jacobson et al.23 article, we
see that the bifurcation analysis of periodic orbits on the
global potential energy surface correctly predicts that, first,
the bifurcation of the trans mode (TR1) occurs at a lower
energy than the bifurcation of the cis mode (ROT1). Second,
the counter-rotation has a negative anharmonicity and the
TR1 a positive anharmonicity. However, while the continu-
ation lines cross in Figure 15b, the quantum mechanical
results show an avoided crossing. Even correcting with the
ZPE, it was not possible to bring classical and quantum
pictures into agreement, which means that the global potential
function does not predict the bending energy levels accurately
in this region of the spectrum.

There have been several studies on the acetylene vibra-
tional spectrum139,222-224 that predict the counter-rotation
periodic orbits. In their very recent work, Jung and Taylor60

managed to unequivocally assign all 144 eigenstates of
polyad 22. By lifting the semiclassical wave functions from
the 2D reduced dimension space to the Cartesian displace-
ment coordinates, they identified the classical organizing
points which are a minimum, a saddle, and a maximum. As
a result, the polyad states are classified in three classes: local
bend (minimum), cross bend (saddle), and counter-rotor
(maximum).

The periodic orbit analysis of the 6D global PES reveals
more details and bifurcations than the 2D effective Hamil-
tonian. However, it is remarkable that two totally different
approaches, different coordinates and Hamiltonian forms,
unveil the basic dynamics of this four atom molecule at
relatively high vibrational energies. Not only the relevant
periodic orbits are predicted but even their stability. This is
an important conclusion if we take into account that as the
size of a molecule increases the construction of accurate
potential functions becomes a remote target for computational
chemistry.

Other tetraatomic molecules studied by dispersed fluores-
cence and stimulated emission pumping spectroscopies are
HFCO32,33 and thiophosgene.39,225 For the latter (SCCl2), a
spectroscopic Hamiltonian was produced by van Vleck
perturbation theory and analyzed by visual inspection of the
3D reduced dimension wave functions.135 Vibrational levels
up to 9000 cm-1 were assigned, revealing the regularity and
localization of these highly excited states. Very recent work
by Chowdary and Gruebele39,226 demonstrates sharp features
in the vibrational spectrum of SCCl2 at and above its two
lowest-lying dissociation limits. Highly regular vibrational
progressions persist at dissociation, as was seen in some

Figure 15. Continuation/bifurcation diagram of acetylene: (a) the
two bending trans (TR) and cis (CIS) modes and (b) magnification
of the trans and cis bending bifurcation diagram. In part b, solid
lines indicate stable POs and dashed lines unstable ones. Reprinted
with permission from ref 85. Copyright 2003 American Institute
of Physics.
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smaller molecules. Nearly all of the studied transitions could
be assigned and fitted by a simple effective Hamiltonian
without resonance terms, up to a total vibrational excitation
of 36 quanta. The character of the highly excited vibrational
wave functions is not normal modelike, but it nonetheless
arises gradually from the normal modes as the energy
increases. As a matter of fact, looking at the plots of the
eigenfunctions39 calculated in the normal coordinates of the
C-S bond stretch (q1) and the out of plane bend (q4), one
can recognize the trace of a 1:2 resonance (ω4:ω1 ) 1:2) at
low energies and the assignment of the high energy levels
to a bifurcating family of periodic orbits.

Larger molecules such as CHBrClF,60 CDBrClF, and
CF3CHFI,61,60 studied by effective 3D Hamiltonians which
accurately fit Fourier transform infrared spectra, show
localization in configuration space and regularity at highly
excited energies. This is counterintuitive, since as the number
of normal modes increases in polyatomic molecules, one
expects overlapping resonances and, thus, chaos in the
vibrational motions of the molecule. Are the studied mol-
ecules exceptional or is the observed localization more
common among polyatomic molecules? This question is
pertinent to biomolecules, since we do expect regularities.
In refs 39 and 226, the authors argue that the fraction of
states partly localized in state space at the dissociation energy
increases with the number of vibrational modes; the same
energy is distributed over more modes, resulting in fewer
quanta per mode, i.e. more states at the edge, and hence fewer
coupling partners nearby in state space and smaller anhar-
monic couplings. Although this is true, we should however
not forget that as the number of vibrational degrees of
freedom increases we expect more overlapping resonances
which result in chaos even at low energies. In the next section
we present our first efforts to investigate the above question.

6.2. Biomolecules
Biomolecules are complex systems, and therefore, it is not

surprising that statistical mechanical methods are used for
their study. The systematic methods of nonlinear mechanics
based on hierarchically calculating stationary objects such
as periodic orbits, tori, and stable and unstable manifolds
are taken into account only for systems with a few degrees
of freedom. However, we argued before that periodic orbits
offer the means to extract the physics from complicated
calculations and even to get reliable estimates of quantum
energies. Recently, it has been demonstrated that periodic
orbits can be located for biomolecules such as the dipeptide
of alanine, a molecule with sixty internal degrees of
freedom.103

Alanine dipeptide has served as a prototype molecule for
testing new algorithms in numerous studies in the past.227,228

We also used this molecule by employing the parameters of
CHARMM27 for the force field,101 Morse functions for the
bond stretches, and harmonic potentials for the angles. In
this work, the principal families emanating from the two
lowest minima (min1 and min2) and the transition state (ts1)
between them (see Figure 16) were investigated. The energy
barrier for the lowest conformation min1 to isomerize to min2
is approximately 0.6 kcal/mol, and the geometries of the two
stable conformers are those shown in Figure 16. They differ
in the orientation of one oxygen. The geometries of these
two conformations correspond to a folded (absolute mini-
mum) and to an elongated structure, respectively. Therefore,

we use the distance of the two nitrogen atoms to assign
trajectories trapped in one or the other minimum.

Among the sixty vibrational normal modes, the 23rd and
24th were studied. The numbers used to assign the families
are the same as the enumeration of the harmonic normal
modes, i.e., by increasing frequency. The 23rd and 24th
normal modes have approximately localized motions. The
NH and CO bonds oscillate in phase, executing the largest
displacements. Our interest in these particular normal modes
came from their specificity. Starting with initial configura-
tions from these oscillations and minimizing the energy, we
approach a specific minimum, the f23 mode leads to min1,
and the f24 leads to min2 (Figure 16).

In Figure 17 the continuation/bifurcation (CB) diagram
for the f23 and f24 families coming out from the three
equilibria of the molecule (min1, min2, ts1) is shown. The
principal families generated from the minima are initially
stable. The periodic orbits which emerge from the transition
state start as unstable with the same rank of instability as
the transition state. ts1 has rank-1 instability. In this figure,
the frequency obtained from the period of PO as a function
of the total energy of the molecule is plotted. The anharmonic
behavior of these vibrational modes is evident. For the f24
families of min1 and the saddle point (ts1), an early center-
saddle bifurcation is observed. This means that at a specific

Figure 16. Geometries of the two minima and the transition state
for the lowest energy isomerization reaction of alanine dipeptide.
The two squares drawn on the transition state enclose the atoms
which execute the largest motions in the f23 (left) and f24 (right)
periodic orbits. Quenching the energy from configurations of the
f23 and f24 periodic orbits specifically leads to the minima min1
and min2, respectively. From left to right, the balls correspond to
the atoms of the chemical structure CH3

CONHCH(CH3)CONHCH3. Reprinted with permission from ref
103. Copyright 2007 American Institute of Physics.

Figure 17. Continuation/bifurcation diagrams of the principal
families of periodic orbits f23 and f24 originated from the equilibria
min1 and min2 and the saddle point ts1 of alanine dipeptide.
Reprinted with permission from ref 103. Copyright 2007 American
Institute of Physics.
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energy the continuation line levels off, decreasing its
anharmonicity, and a new pair of families of periodic orbits
emerges, one of them with stable periodic orbits and the other
with unstable ones. The mechanism of appearance of these
bifurcations is the same as was described before.147 It is worth
noting the higher frequency of the 24th mode of min1
compared to the other two equilibrium points of the potential
function. After the appearance of the center-saddle bifurca-
tion (family min1 - f24 - cs1), it was very difficult to
continue this branch at higher energies. We expect a cascade
of center-saddle bifurcations as we go up in energy.9-11

To the best of our knowledge, this molecule is the first
which demonstrates that principal families with high anhar-
monicity can indeed be located for a rather extended energy
interval (≈3 eV) from different minima and transition states
of a large molecule. New periodic orbits emanate from CS
bifurcations, as it was repeatedly found in triatomic molecules.

The question of what happens to a polypeptide in water
solution has been addressed by several investigators.229,230

We have also examined the stability of the min1 conforma-
tion excited to the normal mode f23, for example, when it is
embedded in water.231 This is done by choosing initial
conditions for the coordinates and velocities of the alanine
dipeptide atoms along the periodic orbits of a specific isomer
and normal mode. Then, we combine them with the
coordinates and velocities of 487 water molecules, described
by the TIP3P parameters. These embedded states simulate
the excitation of alanine dipeptide in an overtone state. After
that, the dynamics is followed for 50 ps in a canonical
ensemble at several temperatures.

Localization in complex systems is currently a subject of
intense research.52,232 For example, energy localization and
the theory of breathers have been utilized to argue for the
existence of long, nonexponential excited state relaxation in
myoglobin.232 In these studies, the authors used simple
models to argue that localized states may be responsible for
the observed long relaxation times. The existence of stable
periodic orbits for substantial energy ranges in alanine
dipeptide described with an empirical potential function
supports these arguments. Such potentials are widely used
in simulations of biomolecules. Systematic investigations of
the problem of nonexponential relaxation in polyatomic
molecules have been presented by Gruebele.233,234

Different time scales in the isomerization process of
alanine dipeptide depending on the excitation of specific
vibrational modes but from different conformations103 have
been found. Although we excite similar modes in the three
conformations (min1, min2, ts1), their subsequent dynamics
differ substantially. Novel spectroscopic methods have been
applied to study small peptides in the subpicosecond time
scale. In a recent investigation of alanine tripeptide in water
by two-dimensional vibrational spectroscopy, conformational
fluctuations at the time scale of 0.1 ps have been reported.235

It is worth noting that the stability parameter of the unstable
POs which originates from the transition state ts1 gives an
upper estimate of the lifetime of the complex. In the case of
alanine dipeptide, this time is predicted to be 0.3 ps, close
to that found by Hamm and co-workers.235

Complexity is inherent in biological molecules not only
because of the large number of atoms but also because of
their nonlinear interactions responsible for chaotic behaviors,
resonances, and bifurcation phenomena. Thus, versatile
spectroscopic techniques have been invented to achieve
temporal and spatial resolution5,46,236 to minimize the uncer-

tainties in assigning the spectra of complex molecules. Can
we associate spectral lines to specific chemical bonds or
species in a large molecule? Can energy stay localized in a
bond for a period of time sufficiently long to leave a
fingerprint in the spectrum? These long-standing problems
were investigated by studying the resonance Raman spectra
of ferryl-oxo intermediates of cytochrome c oxidase.

Cytochrome c oxidase (CcO) couples the four electron
reduction of dioxygen to water with the pump of four protons
across the inner mitochondrial membrane contributing to the
electrochemical gradient that is used to synthesize ATP.
Electrons from cytochrome c pass through a heme-a group
and are then transferred to the binuclear heme-a3/CuB active
site where dioxygen is reduced. The understanding of the
mechanism of action of CcO has been a matter of consider-
able debate. In the reaction of the enzyme with O2, the O-O
bond is cleaved, producing the ferryl-oxo (FeIVdO) species.
In the reaction of the fully reduced enzyme with O2, either
two peaks are identified in the spectra exhibiting ferryl-oxo
character with (FesO) frequency at 790 and 804 cm-1 or
only the latter. It is clear that establishing the dynamics of
the protein environment adjacent to the active site subsequent
to O-O bond cleavage is essential first in understanding the
linkage of oxygen activation with proton translocation and
second in assigning the 790/804 cm-1 peaks.

An application of the periodic orbits method for the active
site of the enzyme with 95-atoms has recently been pub-
lished, in conjunction with molecular dynamics calculations
of larger systems which include the embraced active site by
the protein and selected protonated/deprotonated conforma-
tions of amino acids.104 It was demonstrated that for the active
site stable periodic orbits exist for a substantial energy range.
Families of periodic orbits which are associated with the
vibrations of the FeIVdO bond mark the regions of phase
space where nearby trajectories remain localized, and they
enable one to assign the spectral bands of the active site in
the protein matrix. It has also been demonstrated that proton
motion adjacent to an active site can lead to significant
perturbations of the FeIVdO isotopic difference vibrational
spectra in cytochrome c oxidase, without a change in the
oxidation state of the metal sites. This finding links spec-
troscopic characteristics to protonation events occurring
during enzymatic turnover.104

In Figure 18, the CB diagram is shown for those principal
families that are mainly associated with the ferryl-oxo bond
oscillations. The labels correspond to the harmonic normal
modes from which the family originates. We can see three
major frequency regions. The low frequency f134 family
corresponds to a breathing mode of the imidazole in the
proximal area of iron. The f139 family is associated with an
oscillation of the Fe-N bond, but it appears to be highly
anharmonic. This anharmonicity results in a center-saddle
bifurcation, cs139a.

The f139 family of POs is an example of how anharmo-
nicity and coupling to other degrees of freedom can drasti-
cally change the harmonic vibrational frequency of the mode
even with a small increase in energy. Thus, we expect and
do find changes in the spectra of the larger system by
examining the different protonation states which affect the
electrostatic environment of the Fe-O bond.104 Unfortu-
nately, it is difficult to foresee such nonlinear phenomena in
advance. Usually, spectroscopic investigations or detailed
calculations are required.

Bifurcation Phenomena Chemical Reviews, 2009, Vol. 109, No. 9 4267
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The middle frequency families, f141, f142, and f143, differ
only by a few wavenumbers and show small anharmonicities.
They involve oscillations of Fe with the porphyrin ring. The
higher frequency periodic orbits of the f145 family show
negative anharmonicity and represent asymmetric oscillations
of the imidazolesFedO bonds. In all these families, the
hydroxylgroupattachedtoCuBshowsappreciabledisplacements.

In principle, one could examine all vibrational modes of
the active site and foresee the spectroscopic properties and
dynamics of the species. Practically, we concentrate on those
features which are related to experimental observations.
Questions concerning the reliability of the potential function
are of course serious as far as quantitative answers are
concerned. However, as was stated before, the nonlinear
properties of motion show structural stability and we do not
expect them to change drastically when improving the
potential function.

7. Conclusions
The question of statistical or nonstatistical dynamical

behavior of large systems with many degrees of freedom
has a long history. The early numerical experiments of Fermi,
Pasta, Ulam, and Mary Tsingou (FPU)237-239 on nonlinear
vibrating strings demonstrated that large systems not neces-
sarily exhibit ergodic behavior as was expected, but instead
quasi-periodic motions. The latter implies localization of the
energy in a few vibrational modes. In spite of these early
results, the statistical RRKM theory190 for calculating reaction
rate constants has been very popular for decades with
numerous applications. The FPU calculations237 were im-
portant in showing both the complexity of nonlinear system
behavior and the value of computer simulation in analyzing
these systems.

Polyatomic molecules vibrationally excited at energies
close to the isomerization or dissociation energies are
nonlinear systems, and they are expected to show all these
nonlinear phenomena extensively studied in the last decades.
Modern spectroscopy reveals the fingerprints of these
phenomena in the spectra: sharp spectral lines attributed to
vibrational states localized in configuration space, resonances
between normal modes or bifurcations of them, and chaotic
behaviors with specific spectral distributions.181 It is true that,
in spite of all these studies, even now the discovery of sharp

spectral lines or nonexponential decays in polyatomic
molecules brings a surprise to the investigators, and the
pertinent quantum states are named exotic.

In this review we have demonstrated that the spectral
assignment of vibrationally excited molecules does require
the identification of those classical stationary objects
(equilibria-periodic orbits-tori-manifolds) that act as or-
ganizing structures60 for the quantum mechanical eigenstates.
Hence, as we explore in the first level the landscape of the
PES of polyatomic molecules for anticipating molecular
dynamics, at the second level periodic orbits analysis is
necessary to explore molecular dynamics in detail. A nice
application of a PO analysis was recently presented on the
study of the dissociation mechanism in bichromatically
driven diatomic molecules.240 Through the stability of
periodic orbits, the investigators analyze the dissociation
probability when parameters, such as the two amplitudes and
the phase lag of the laser field, are varied.

Bifurcation analysis of periodic orbits which emanate from
the saddle points of polyatomic PESs may also be useful in
studying the bifurcations of the no-return transition states
(NHIM), as a recent study has shown.241 Although periodic
orbits for systems with three and higher degrees of freedom
do not separate the phase space into two disjoined sets of
reactants and products, the reduced dimension tori around
the unstable POs may guide one to predict possible bifurca-
tions of NHIM at high energies. We have constructed
continuation/bifurcation diagrams of periodic orbits that
emanate from saddle points of the PES for FH2

170 and
recently for alanine dipeptide.103

Recognizing that the transition from normal to local stretch
or bend modes as the energy of the molecule varies is the
result of a pitchfork bifurcation, we understand that localiza-
tion may result because of other types of bifurcations as well,
more commonly center-saddle. By establishing a cor-
respondence between quantum eigenstates and phase space
structures, we open a channel to control the dynamics of
polyatomic molecules.242

In this review it is demonstrated that we do have the means
for locating POs in large molecules with many degrees of
freedom in Cartesian coordinates, revealing a lot of the details
in bifurcations and thus nonlinear dynamics of the molecule.
Nevertheless, since nature very often simplifies our work by
reducing the active space of resonances in two or three
dimensions, effective Hamiltonians and well established
semiclassical theory assist us to assign complex spectra and
extract the dynamics not only of overtone states but also of
combination states, too.

It is true that, even after decades of research in molecular
spectroscopy, there are not many spectroscopic studies of
polyatomic molecules at energies close to and above isomer-
ization or dissociation energies. Apparently, this is due to
their complexity. We believe that the application of nonlinear
molecular mechanics will accelerate the investigation of
highly excited molecules. Moreover, we do foresee the
discovery of new phenomena, such as complex instability,149

to be observed spectroscopically in polyatomic molecules.
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Schinke, R.; Werner, H.-J.; Bauer, C.; Rosmus, P. J. Chem. Phys.
1997, 106, 5359–5378.

(37) Northrup, F. J.; Bethardy, G. A.; Macdonald, R. G. J. Mol. Spectrosc.
1997, 186, 349–362.

(38) Delon, A.; Reiche, F.; Abel, B.; Grebenshchikov, S. Y.; Schinke, R.
J. Phys. Chem. 2000, 104, 10374–10382.

(39) Chowdary, P. D.; Gruebele, M. J. Chem. Phys. 2009, 130, 024305.

(40) Henry, B. R. Vibrational Spectra and Structure; Elsevier: New York,
1993; Vol. 10.

(41) Crim, F. F. Acc. Chem. Res. 1999, 32, 877–884.
(42) Leitner, D. M. AdV. Chem. Phys. 2005, 130, 205–256.
(43) Leitner, D. M. Annual ReView Physical Chemistry; Annual Reviews:

Palo Alto, CA, 2008; Vol. 59, pp 233-259.
(44) Backus, E. H.; Nguyen, P. H.; Botan, V.; Pfister, R.; Moretto, A.;

Crisma, M.; Toniolo, C.; Stock, G.; Hamm, P. J. Phys. Chem. B
2008, 112, 9091–9099.

(45) Kolano, C.; Helbing, J.; Sander, W.; Hamm, P. J. Phys. Chem. B
2008, 111, 11297–11302.

(46) Hamm, P.; Helbing, J.; Bredenbeck, J. Annu. ReV. Phys. Chem. 2008,
59, 291–317.

(47) Treuffet, J.; Kubarych, K. J.; Lambry, J.-C.; Pilet, E.; Masson, J.-
B.; Martin, J.-L.; Vos, M. H.; Joffre, M.; Alexandrou, A. Proc. Natl.
Acad. Sci. U.S.A. 2007, 104, 15705–15710.

(48) Koutsoupakis, C.; Pinakoulaki, W.; Stavrakakis, S.; Daskalakis, V.;
Varotsis, C. Biochim. Biophys. Acta 2004, 1655, 347–352.

(49) Koutsoupakis, C.; Soulimane, T.; Varotsis, C. Biophys. J. 2004, 86,
2438–2444.

(50) Varotsis, C.; Babcock, G. T. Biochemistry 1990, 29, 7357–7362.
(51) Aubry, S. Physica D 1997, 103, 201–250.
(52) Campbell, D. K.; Flach, S.; Kivshar, Y. S. Phys. Today 2004, 43,

43–49.
(53) Sievers, A. J.; Takeno, S. Phys. ReV. Lett. 1988, 61, 970–973.
(54) Goldfield, E. M.; Gray, S. K. AdV. Chem. Phys. 2007, 136, 1–37.
(55) Zou, S.; Bowman, J. M. J. Chem. Phys. 2002, 117, 5507–5510.
(56) Kellman, M. E. Annu. ReV. Phys. Chem. 1995, 46, 395–422.
(57) Kellman, M. E.; Tyng, V. Acc. Chem. Res. 2007, 40, 243–250.
(58) Joyeux, M.; Sugny, D. Can. J. Phys. 2002, 80, 1459–1480.
(59) Joyeux, M.; Sugny, D.; Tyng, V.; Kellman, M.; Ishikawa, H.; Field,

R. W.; Beck, C.; Schinke, R. J. Chem. Phys. 2000, 112, 4162–4172.
(60) Jung, C.; Taylor, H. S. J. Phys. Chem. A 2007, 111, 3047–3068.
(61) Manikandan, P.; Semparithi, A.; Keshavamurthy, S. J. Phys. Chem.

A 2009, 113, 1717–1730.
(62) Landau, L. D.; Lifshitz, E. M. Mechanics, 3rd ed.; Pergamon Press:

Oxford, England, 1976.
(63) Vleck, J. H. V. ReV. Mod. Phys. 1951, 23, 213–227.
(64) Birkhoff, G. D. Colloq. Pub. No. 9 1979, 14–22.
(65) Gustavson, F. G. Astron. J. 1966, 71, 670–686.
(66) Farantos, S. C. Int. ReV. Phys. Chem. 1996, 15, 345–374.
(67) Montaldi, J.; Roberts, M.; Stewart, I. Nonlinearity 1990, 3, 695–

730.
(68) Hanssmann, H. Local and Semi-Local Bifurcations in Hamiltonian

Dynamical Systems: Results and Examples; Springer-Verlag: Berlin,
Heidelberg, 2007.

(69) Main, J.; Mandelshtam, V. A.; Wunner, G.; Taylor, H. S. Nonlinearity
1998, 11, 1015–1035.

(70) Martens, C. C.; Davis, M. J.; Ezra, G. S. Chem. Phys. Lett. 1987,
142, 519–528.

(71) Engel, Y. M.; Levine, R. D. Chem. Phys. Lett. 1989, 164, 270–278.
(72) Heller, E. J. Phys. ReV. Lett. 1984, 53, 1515–1518.
(73) Polavieja, G.; Borondo, F.; Benito, R. M. Phys. ReV. Lett. 1994, 73,

1613–1616.
(74) Schweizer, W.; Jans, W.; Uzer, T. Phys. ReV. A 1998, 58, 1382–

1388.
(75) Wales, D. J. Energy Landscapes: Applications to Clusters, Biomol-

ecules and Glasses; Cambridge University Press: 2004.
(76) In this article we adopt the term center-saddle (CS) elementary

bifurcation in accordance with mathematical literature for Hamiltonian
systems,68 instead of the term saddle-node (SN) used for generic
dynamical systems and employed in our previous publications.

(77) Lawton, R. T.; Child, M. S. Mol. Phys. 1981, 44, 709–723.
(78) Prosmiti, R.; Farantos, S. C.; Guo, H. Chem. Phys. Lett. 1999, 311,

241–247.
(79) Herzberg, G. Infrared and Raman Spectra; Van Nostrand: New York,

1945.
(80) Halonen, L. AdV. Chem. Phys. 1998, 104, 41–179.
(81) Jensen, P. Mol. Phys. 2000, 98, 1253–1285.
(82) Keshavamurthy, S.; Ezra, G. S. J. Chem. Phys. 1997, 107, 156–179.
(83) Paskauskas, R.; Chandre, C.; Uzer, T. Phys. ReV. Lett. 2008, 100,

083001–4.
(84) Prosmiti, R.; Farantos, S. C. J. Chem. Phys. 1995, 103, 3299–3314.
(85) Prosmiti, R.; Farantos, S. C. J. Chem. Phys. 2003, 118, 8275–8280.
(86) Murrell, J. N.; Carter, S.; Farantos, S. C.; Huxley, P.; Varandas,

A. J. C. Molecular Potential Energy Functions; John Wiley and Sons
Ltd: 1984.

(87) Mezey, P. G. Potential Energy Hypersurfaces; Elsevier Science
Publishers B.V.: Amsterdam, The Netherlands, 1987; Vol. 53.

(88) Collins, M. A. AdV. Chem. Phys. 1996, 93, 389–453.
(89) Werner, H.-J.; Knowles, P. J.; Lindh, R.; Manby, F. R.; Schütz, M.;
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